Browsing by Author "Straaten, Oliver van"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda(Soil, 2021) Tamale, Joseph; Hüppi, Roman; Griepentrog, Marco; Turyagyenda, Laban Frank; Doetterl, Sebastian; Straaten, Oliver vanSoil macronutrient availability is one of the abiotic controls that alters the exchange of greenhouse gases (GHGs) between the soil and the atmosphere in tropical forests. However, evidence on the macronutrient regulation of soil GHG fluxes from central African tropical forests is still lacking, limiting our understanding of how these biomes could respond to potential future increases in nitrogen (N) and phosphorus (P) deposition. The aim of this study was to disentangle the regulation effect of soil nutrients on soil GHG fluxes from a Ugandan tropical forest reserve in the context of increasing N and P deposition. Therefore, a large-scale nutrient manipulation experiment (NME), based on 40 m×40 m plots with different nutrient addition treatments (N, P, N + P, and control), was established in the Budongo Central Forest Reserve. Soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes were measured monthly, using permanently installed static chambers, for 14 months. Total soil CO2 fluxes were partitioned into autotrophic and heterotrophic components through a root trenching treatment. In addition, soil temperature, soil water content, and nitrates were measured in parallel to GHG fluxes. N addition (N and N + P) resulted in significantly higher N2O fluxes in the transitory phase (0–28 d after fertilization; p<0.01) because N fertilization likely increased soil N beyond the microbial immobilization and plant nutritional demands, leaving the excess to be nitrified or denitrified. Prolonged N fertilization, however, did not elicit a significant response in background (measured more than 28 d after fertilization) N2O fluxes. P fertilization marginally and significantly increased transitory (p=0.05) and background (p=0.01) CH4 consumption, probably because it enhanced methanotrophic activity. The addition of N and P (N + P) resulted in larger CO2 fluxes in the transitory phase (p=0.01), suggesting a possible co-limitation of both N and P on soil respiration. Heterotrophic (microbial) CO2 effluxes were significantly higher than the autotrophic (root) CO2 effluxes (p<0.01) across all treatment plots, with microbes contributing about two-thirds of the total soil CO2 effluxes. However, neither heterotrophic nor autotrophic respiration significantly differed between treatments. The results from this study suggest that the feedback of tropical forests to the global soil GHG budget could be disproportionately altered by increases in N and P availability over these biomes.Item Responses of tree growth and biomass production to nutrient addition in a semi-deciduous tropical forest in Africa(Ecology, 2022) Manu, Raphael; Corre, Marife D.; Aleeje, Alfred; Mwanjalolo, Majaliwa J. G.; Babweteera, Fred; Veldkamp, Edzo; Straaten, Oliver vanExperimental evidence of nutrient limitations on primary productivity in Afrotropical forests is rare and globally underrepresented yet are crucial for understanding constraints to terrestrial carbon uptake. In an ecosystem-scale nutrient manipulation experiment, we assessed the early responses of tree growth rates among different tree sizes, taxonomic species, and at a community level in a humid tropical forest in Uganda. Following a full factorial design, we established 32 (eight treatments four replicates) experimental plots of 40 40 m each. We added nitrogen (N), phosphorus (P), potassium (K), their combinations (NP, NK, PK, and NPK), and control at the rates of 125 kg N ha 1 year 1, 50 kg P ha 1 year 1 and 50 kg K ha 1 year 1, split into four equal applications, and measured stem growth of more than 15,000 trees with diameter at breast height (dbh) ≥1 cm. After 2 years, the response of tree stem growth to nutrient additions was dependent on tree sizes, species and leaf habit but not community wide. First, tree stem growth increased under N additions, primarily among medium-sized trees (10–30 cm dbh), and in trees of Lasiodiscus mildbraedii in the second year of the experiment. Second, K limitation was evident in semi-deciduous trees, which increased stem growth by 46% in +K than –K treatments, following a strong, prolonged dry season during the first year of the experiment. This highlights the key role of K in stomatal regulation and maintenance of water balance in trees, particularly under water-stressed conditions. Third, the role of P in promoting tree growth and carbon accumulation rates in this forest on highly weathered soils was rather not pronounced; nonetheless, mortality among saplings (1–5 cm dbh) was reduced by 30% in +P than in –P treatments. Although stem growth responses to nutrient interaction effects were positive or negative (likely depending on nutrient combinations and climate variability), our results underscore the fact that, in a highly diverse forest ecosystem, multiple nutrients and not one single nutrient regulate tree growth and aboveground carbon uptake due to varying nutrient requirements and acquisition strategies of different tree sizes, species, and leaf habits.