Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sekamatte, Musa"

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Anthrax Bio-surveillance of Livestock in Arua District, Uganda, 2017-2018
    (2017) Omodo, Michael; Gardela, Jaume; Namatovu, Alice; Ademun Okurut, Rose; Esau, Martin; Acham, Merab; Nakanjako, Maria Flavia; Mugezi, Israel; Isingoma, Emmauel; Mwanja, Moses; Lumu, Paul; Ssenkeera, Ben; Atim, Stella A.; Gonahasa, Doreen N.; Sekamatte, Musa; Gouilh, Meriadeg Ar; Gonzalez, Jean Paul
    Anthrax, caused by Bacillus anthracis, is a widespread zoonotic disease with many human cases, especially in developing countries. Even with its global distribution, anthrax is a neglected disease with scarce information about its actual impact on the community level. Due to the ecological dynamics of anthrax transmission at the wildlife-livestock interface, the Sub-Saharan Africa region becomes a high-risk zone for maintaining and acquiring the disease. In this regard, some subregions of Uganda are endemic to anthrax with regular seasonal trends. However, there is scarce data about anthrax outbreaks in Uganda. Here, we confirmed the presence of B. anthracis in several livestock samples after a suspected anthrax outbreak among livestock and humans in Arua District. Additionally, we explored the potential risk factors of anthrax through a survey within the community kraals. We provide evidence that the most affected livestock species during the Arua outbreak were cattle (86%) compared to the rest of the livestock species present in the area. Moreover, the farmers’ education level and the affection of people in the village were the most critical factors determining the disease’s knowledge and awareness. Consequently, the lack of understanding of the ecology of anthrax may contribute to the spread of the infection between livestock and humans, and it is critical to reducing the presence and persistence of the B. anthracis spores in the environment. Finally, we discuss the increasingly recognized necessity to strengthen global capacity using a One Health approach to prevent, detect, control, and respond to public threats in Uganda
  • Loading...
    Thumbnail Image
    Item
    Blood Culture Testing Outcomes among Non-Malarial Febrile Children at Antimicrobial Resistance Surveillance Sites in Uganda, 2017–2018
    (Tropical medicine & infectious disease, 2018) Kisame, Rogers; Najjemba, Robinah; Griensven, Johan van; Kitutu, Freddy Eric; Takarinda, Kudakwashe; Thekkur, Pruthu; Delamou, Alexandre; Walwema, Richard; Kakooza, Francis; Mugerwa, Ibrahim; Sekamatte, Musa; Robert, Kimera; Katairo, Thomas; Opollo, Marc Sam; Otita, Morgan; Lamorde, Mohammed
    Blood culture (BC) processes are critical to the utility of diagnostic testing, bloodstream infection (BSI) management, and antimicrobial resistance (AMR) surveillance. While Uganda has established BC guidelines, often laboratory practice does not meet the desired standards. This compromises pathogen recovery, reliability of antimicrobial susceptibility testing, and diagnostic test utility. This study assessed laboratory BC process outcomes among non-malarial febrile children below five years of age at five AMR surveillance sites in Uganda between 2017 and 2018. Secondary BC testing data was reviewed against established standards. Overall, 959 BC specimens were processed. Of these, 91% were from female patients, neonates, infants, and young children (1–48 months). A total of 37 AMR priority pathogens were identified; Staphylococcus aureus was predominant (54%), followed by Escherichia coli (19%). The diagnostic yield was low (4.9%). Only 6.3% of isolates were identified. AST was performed on 70% (18/26) of identified AMR priority isolates, and only 40% of these tests adhered to recommended standards. Interventions are needed to improve laboratory BC practices for effective patient management through targeted antimicrobial therapy and AMR surveillance in Uganda. Further research on process documentation, diagnostic yield, and a review of patient outcomes for all hospitalized febrile patients is needed.
  • Loading...
    Thumbnail Image
    Item
    Cutaneous anthrax associated with handling carcasses of animals that died suddenly of unknown cause: Arua District, Uganda, January 2015–August 2017
    (PLoS Neglected Tropical Diseases, 2021) Loy Aceng, Freda; Riolexus Ario, Alex; Alitubeera, Phoebe Hilda; Matinda Neckyon, Mukasa; Kadobera, Daniel; Sekamatte, Musa; Okethwangu, Denis; Bulage, Lilian; Harris, Julie R.; Nguma, Willy; Birungi Ndumu, Deo; Buule, Joshua; Nyakarahuka, Luke; Zhu, Bao-Ping
    Anthrax is a zoonotic disease that can be transmitted to humans from infected animals. During May–June 2017, three persons with probable cutaneous anthrax were reported in Arua District, Uganda; one died. All had recently handled carcasses of livestock that died suddenly and a skin lesion from a deceased person tested positive by PCR for Bacillus anthracis. During July, a bull in the same community died suddenly and the blood sample tested positive by PCR for Bacillus anthracis. The aim of this investigation was to establish the scope of the problem, identify exposures associated with illness, and recommend evidencebased control measures. Methods A probable case was defined as acute onset of a papulo-vesicular skin lesion subsequently forming an eschar in a resident of Arua District during January 2015–August 2017. A confirmed case was a probable case with a skin sample testing positive by polymerase chain reaction (PCR) for B. anthracis. Cases were identified by medical record review and active community search. In a case-control study, exposures between case-patients and frequency- and village-matched asymptomatic controls were compared. Key animal health staff were interviewed to learn about livestock deaths. Results There were 68 case-patients (67 probable, 1 confirmed), and 2 deaths identified. Cases occurred throughout the three-year period, peaking during dry seasons. All cases occurred following sudden livestock deaths in the villages. Case-patients came from two neighboring sub-counties: Rigbo (attack rate (AR) = 21.9/10,000 population) and Rhino Camp (AR = 1.9/ 10,000). Males (AR = 24.9/10,000) were more affected than females (AR = 0.7/10,000). Persons aged 30–39 years (AR = 40.1/10,000 population) were most affected. Among all cases and 136 controls, skinning (ORM-H = 5.0, 95%CI: 2.3–11), butchering (ORM-H = 22, 95%CI: 5.5–89), and carrying the carcass of livestock that died suddenly (ORM-H = 6.9, 95% CI: 3.0–16) were associated with illness. Conclusions Exposure to carcasses of animals that died suddenly was a likely risk factor for cutaneous anthrax in Arua District during 2015–2017. The recommendations are investigation of anthrax burden in livestock, prevention of animal infections through vaccinations, safe disposal of the carcasses, public education on risk factors for infection and prompt treatment of illness following exposure to animals that died suddenly.
  • Loading...
    Thumbnail Image
    Item
    First Laboratory-Confirmed Outbreak of Human and Animal Rift Valley Fever Virus in Uganda in 48 Years
    (The American journal of tropical medicine and hygiene, 2019) Shoemaker, Trevor R.; Nyakarahuka, Luke; Balinandi, Stephen; Ojwang, Joseph; Tumusiime, Alex; Mulei, Sophia; Kyondo, Jackson; Lubwama, Bernard; Sekamatte, Musa; Namutebi, Annemarion; Tusiime, Patrick; Monje, Fred; Mayanja, Martin; Ssendagire, Steven; Dahlke, Melissa; Kyazze, Simon; Wetaka, Milton; Makumbi, Issa; Borchert, Jeff; Zufan, Sara; Patel, Ketan; Whitmer, Shannon; Brown, Shelley; Davis, William G.; Klena, John D.; Nichol, Stuart T.; Rollin, Pierre E.; Lutwama, Julius
    In March 2016, an outbreak of Rift Valley fever (RVF) was identified in Kabale district, southwestern Uganda. A comprehensive outbreak investigation was initiated, including human, livestock, and mosquito vector investigations. Overall, four cases of acute, nonfatal human disease were identified, three by RVF virus (RVFV) reverse transcriptase polymerase chain reaction (RT-PCR), and one by IgM and IgG serology. Investigations of cattle, sheep, and goat samples from homes and villages of confirmed and probable RVF cases and the Kabale central abattoir found that eight of 83 (10%) animals were positive for RVFV by IgG serology; one goat from the home of a confirmed case tested positive by RT-PCR. Whole genome sequencing from three clinical specimens was performed and phylogenetic analysis inferred the relatedness of 2016 RVFV with the 2006–2007 Kenya-2 clade, suggesting previous introduction of RVFV into southwestern Uganda. An entomological survey identified three of 298 pools (1%) of Aedes and Coquillettidia species that were RVFV positive by RT-PCR. This was the first identification of RVFV in Uganda in 48 years and the 10th independent viral hemorrhagic fever outbreak to be confirmed in Uganda since 2010.
  • Loading...
    Thumbnail Image
    Item
    Implementation of the World Health Organization Global Antimicrobial Resistance Surveillance System in Uganda, 2015-2020: Mixed-Methods Study Using National Surveillance Data
    (JMIR public health and surveillance, 2021) Nabadda, Susan; Kakooza, Francis; Kiggundu, Reuben; Walwema, Richard; Bazira, Joel; Mayito, Jonathan; Mugerwa, Ibrahimm; Sekamatte, Musa; Kambugu, Andrew; Lamorde, Mohammed; Kajumbula, Henry; Mwebasa, Henry
    Antimicrobial resistance (AMR) is an emerging public health crisis in Uganda. The World Health Organization (WHO) Global Action Plan recommends that countries should develop and implement National Action Plans for AMR. We describe the establishment of the national AMR program in Uganda and present the early microbial sensitivity results from the program. Objective: The aim of this study is to describe a national surveillance program that was developed to perform the systematic and continuous collection, analysis, and interpretation of AMR data. Methods: A systematic qualitative description of the process and progress made in the establishment of the national AMR program is provided, detailing the progress made from 2015 to 2020. This is followed by a report of the findings of the isolates that were collected from AMR surveillance sites. Identification and antimicrobial susceptibility testing (AST) of the bacterial isolates were performed using standard methods at both the surveillance sites and the reference laboratory. Results: Remarkable progress has been achieved in the establishment of the national AMR program, which is guided by the WHO Global Laboratory AMR Surveillance System (GLASS) in Uganda. A functional national coordinating center for AMR has been established with a supporting designated reference laboratory. WHONET software for AMR data management has been installed in the surveillance sites and laboratory staff trained on data quality assurance. Uganda has progressively submitted data to the WHO GLASS reporting system. Of the 19,216 isolates from WHO GLASS priority specimens collected from October 2015 to June 2020, 22.95% (n=4411) had community-acquired infections, 9.46% (n=1818) had hospital-acquired infections, and 68.57% (n=12,987) had infections of unknown origin. The highest proportion of the specimens was blood (12,398/19,216, 64.52%), followed by urine (5278/19,216, 27.47%) and stool (1266/19,216, 6.59%), whereas the lowest proportion was urogenital swabs (274/19,216, 1.4%). The mean age was 19.1 (SD 19.8 years), whereas the median age was 13 years (IQR 28). Approximately 49.13% (9440/19,216) of the participants were female and 50.51% (9706/19,216) were male. Participants with community-acquired infections were older (mean age 28, SD 18.6 years; median age 26, IQR 20.5 years) than those with hospital-acquired infections (mean age 17.3, SD 20.9 years; median age 8, IQR 26 years). All gram-negative (Escherichia coli, Klebsiella pneumoniae, and Neisseria gonorrhoeae) and gram-positive (Staphylococcus aureus and Enterococcus sp) bacteria with AST showed resistance to each of the tested antibiotics. Conclusions: Uganda is the first African country to implement a structured national AMR surveillance program in alignment with the WHO GLASS. The reported AST data indicate very high resistance to the recommended and prescribed antibiotics for treatment of infections. More effort is required regarding quality assurance of laboratory testing methodologies to ensure optimal adherence to WHO GLASS–recommended pathogen-antimicrobial combinations. The current AMR data will inform the development of treatment algorithms and clinical guidelines.
  • Loading...
    Thumbnail Image
    Item
    Individual-based network model for Rift Valley fever in Kabale District, Uganda
    (PloS one, 2019) Sekamatte, Musa; Riad, Mahbubul H.; Tekleghiorghis, Tesfaalem; Linthicum, Kenneth J.; Britch, Seth C.; Richt, Juergen A.; Gonzalez, J. P.; Scoglio, Caterina M.
    Rift Valley fever (RVF) is a zoonotic disease, that causes significant morbidity and mortality among ungulate livestock and humans in endemic regions. In East Africa, the causative agent of the disease is Rift Valley fever virus (RVFV) which is primarily transmitted by multiple mosquito species in Aedes and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle largely driven by environmental and climatic factors. However, recent RVFV activity in Uganda demonstrated the capability of the virus to spread into new regions through livestock movements, and underscored the need to develop effective mitigation strategies to reduce transmission and prevent spread among cattle populations. We simulated RVFV transmission among cows in 22 different locations of the Kabale District in Uganda using real world livestock data in a network-based model. This model considered livestock as a spatially explicit factor in different locations subjected to specific vector and environmental factors, and was configured to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock movement, and diversity in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be restricted for periods of high mosquito abundance to control epizootic spreading among locations during an RVF outbreak. Importantly, simulation results also showed that cattle populations with heterogeneous genetic diversity as crossbreeds were less susceptible to infection compared to homogenous cattle populations.
  • Loading...
    Thumbnail Image
    Item
    Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective
    (PLoS ONE, 2017) Sekamatte, Musa; Krishnasamy, Vikram; Bulage, Lilian; Kihembo, Christine; Nantima, Noelina; Monje, Fred; Ndumu, Deo; Sentumbwe, Juliet; Mbolanyi, Betty; Aruho, Robert; Kaboyo, Winyi; Mutonga, David; Basler, Colin; Paige, Sarah; Behravesh, Casey Barton
    Zoonotic diseases continue to be a public health burden globally. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a One Health Zoonotic Disease Prioritization Workshop to identify zoonotic diseases of greatest national concern to the Ugandan government.
  • Loading...
    Thumbnail Image
    Item
    Outbreak of Anthrax Associated with Handling and Eating Meat from a Cow, Uganda, 2018
    (Emerging Infectious Diseases, 2020) Kisaakye, Esther; Riolexus Ario, Alex; Bainomugisha, Kenneth; Cossaboom, Caitlin M. Ping Zhu; Lowe, David; Bulage, Lilian; Kadobera, Daniel; Sekamatte, Musa; Lubwama, Bernard; Tumusiime, Dan; Tusiime, Patrick; Downing, Robert; Buule, Joshua; Lutwama, Julius; Salzer, Johanna S.; Matkovic, Eduard; Joy Gary, Jana Ritter,; Zhu, Bao-Ping
    On April 20, 2018, the Kween District Health Office in Kween District, Uganda reported 7 suspected cases of human anthrax. A team from the Uganda Ministry of Health and partners investigated and identified 49 cases, 3 confirmed and 46 suspected; no deaths were reported. Multiple exposures from handling the carcass of a cow that had died suddenly were significantly associated with cutaneous anthrax, whereas eating meat from that cow was associated with gastrointestinal anthrax. Eating undercooked meat was significantly associated with gastrointestinal anthrax, but boiling the meat for >60 minutes was protective. We recommended providing postexposure antimicrobial prophylaxis for all exposed persons, vaccinating healthy livestock in the area, educating farmers to safely dispose of animal carcasses, and avoiding handling or eating meat from livestock that died of unknown causes.
  • Loading...
    Thumbnail Image
    Item
    Risk assessment of Ebola virus disease spreading in Uganda using a multilayer temporal network
    (bioRxiv, 2019) Riad, Mahbubul H.; Sekamatte, Musa; Ocom, Felix; Makumbi, Issa; Scoglio, Caterina M
    Network-based modelling of infectious diseases apply compartmental models on a contact network, which makes the epidemic process crucially dependent on the network structure. For highly contagious diseases such as Ebola virus disease (EVD), the inter-personal contact plays the most vital role in the human to human transmission. Therefore, for accurate representation of the EVD spreading, the contact network needs to resemble the reality. Prior research work has mainly focused on static networks (only permanent contacts) or activity driven networks (only temporal contacts) for Ebola spreading. A comprehensive network for EVD spreading should include both these network structures, as there are always some permanent contacts together with temporal contacts. Therefore, we propose a multilayer temporal network for Uganda, which is at risk of Ebola outbreak from the neighboring Democratic Republic of Congo (DRC) epidemic. The network has a permanent layer representing permanent contacts among individuals within family level, and a data driven temporal network for human movements motivated by cattle trade, fish trade, or general communications. We propose a Gillespie algorithm with the susceptible-infected-recovered (SIR) compartmental model to simulate the evolution of the EVD spreading as well as to evaluate the risk throughout our network. As an example, we applied our method to a multilayer network consisting of 23 districts along different movement routes in Uganda starting from bordering districts of DRC to Kampala. Simulation results shows that some regions are at higher risk of infection, suggesting some focal points for Ebola preparedness and providing direction to inform interventions in the field. Simulation results also shows that decreasing physical contacts as well as increasing preventive measures result in a reduction of chances to develop an outbreak. Overall, the main contribution of this paper lies in the novel method for risk assessment, the accuracy of which can be increased by increasing the amount and the accuracy of the data used to build the network and the model.
  • Loading...
    Thumbnail Image
    Item
    Risk assessment of Ebola virus disease spreading in Uganda using a two-layer temporal network
    (Scientific reports, 2019) Riad, Mahbubul H.; Sekamatte, Musa; Ocom, Felix; Makumbi, Issa; Scoglio, Caterina M.
    Network-based modelling of infectious diseases apply compartmental models on a contact network, which makes the epidemic process crucially dependent on the network structure. For highly contagious diseases such as Ebola virus disease (EVD), interpersonal contact plays the most vital role in humanto- human transmission. Therefore, for accurate representation of EVD spreading, the contact network needs to resemble the reality. Prior research has mainly focused on static networks (only permanent contacts) or activity-driven networks (only temporal contacts) for Ebola spreading. A comprehensive network for EVD spreading should include both these network structures, as there are always some permanent contacts together with temporal contacts. Therefore, we propose a two-layer temporal network for Uganda, which is at risk of an Ebola outbreak from the neighboring Democratic Republic of Congo (DRC) epidemic. The network has a permanent layer representing permanent contacts among individuals within the family level, and a data-driven temporal network for human movements motivated by cattle trade, fish trade, or general communications. We propose a Gillespie algorithm with the susceptible-infected-recovered (SIR) compartmental model to simulate the evolution of EVD spreading as well as to evaluate the risk throughout our network. As an example, we applied our method to a network consisting of 23 districts along different movement routes in Uganda starting from bordering districts of the DRC to Kampala. Simulation results show that some regions are at higher risk of infection, suggesting some focal points for Ebola preparedness and providing direction to inform interventions in the field. Simulation results also show that decreasing physical contact as well as increasing preventive measures result in a reduction of chances to develop an outbreak. Overall, the main contribution of this paper lies in the novel method for risk assessment, which can be more precise with an increasing volume of accurate data for creating the network model.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback