Browsing by Author "Saarman, Norah"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Genome-wide association of trypanosome infection status in the tsetse fly Glossina fuscipes, the major vector of African trypanosomiasis in Uganda(Research Square, 2022) Saarman, Norah; Son, Jae Hak; Zhao, Hongyu; Cosme, Luciano; Kong, Yong; Li, Mo; Wang, Shiyu; Weiss, Brian; Echodu, Richard; Opiro, Robert; Aksoy, Serap; Caccone, AdalgisaThe primary vector of the trypanosome parasite causing human and animal African trypanosomiasis in Uganda is the riverine tsetse fly Glossina fuscipes fuscipes (Gff). We conducted a genome-wide association (GWA) analysis with field-caught Gff. To increase statistical power, we first improved the Gff genome assembly with whole genome 10X Chromium sequencing, used ddRAD-seq to identify autosomal versus sex-chromosomal regions of the genome with data from 96,965 SNPs, and conducted a GWA with a subset of 50,960 autosomal SNPs from 351 flies. Results assigned a full third of the genome to the sex chromosome, suggested possible sex-chromosome aneuploidy in Gff, and identified a single autosomal SNP to be highly associated with trypanosome infection. The top SNP was ~ 1200 bp upstream of the gene lecithin cholesterol acyltransferase (LCAT), an important component of the molecular pathway that initiates trypanosome lysis and protection in mammals. Results indicate that variation upstream of LCAT and/or linked genetic elements are associated with trypanosome infection susceptibility in Gff. This suggests that there may be naturally occurring genetic variation in Gff that can protect against trypanosome infection, thereby paving the way for targeted research into novel vector control strategies that can promote parasite resistance in natural populations.Item A spatial genetics approach to inform vector control of tsetse flies (Glossina fuscipes fuscipes) in Northern Uganda(Ecology and evolution, 2018) Saarman, Norah; Burak, Mary; Opiro, Robert; Hyseni, Chaz; Echodu, Richard; Dion, Kirstin; Opiyo, Elizabeth A.; Dunn, Augustine W.; Amatulli, Giuseppe; Aksoy, Serap; Caccone, AdalgisaTsetse flies (genus Glossina) are the only vector for the parasitic trypanosomes responsible for sleeping sickness and nagana across sub-Saharan Africa. In Uganda, the tsetse fly Glossina fuscipes fuscipes is responsible for transmission of the parasite in 90% of sleeping sickness cases, and co-occurrence of both forms of human-infective trypanosomes makes vector control a priority. We use population genetic data from 38 samples from northern Uganda in a novel methodological pipeline that integrates genetic data, remotely sensed environmental data, and hundreds of field-survey observations. This methodological pipeline identifies isolated habitat by first identifying environmental parameters correlated with genetic differentiation, second, predicting spatial connectivity using field-survey observations and the most predictive environmental parameter(s), and third, overlaying the connectivity surface onto a habitat suitability map. Results from this pipeline indicated that net photosynthesis was the strongest predictor of genetic differentiation in G. f. fuscipes in northern Uganda. The resulting connectivity surface identified a large area of well-connected habitat in northwestern Uganda, and twenty-four isolated patches on the northeastern margin of the G. f. fuscipes distribution. We tested this novel methodological pipeline by completing an ad hoc sample and genetic screen of G. f. fuscipes s amples f rom a m odel-predicted isolated patch, and evaluated whether the ad hoc sample was in fact as genetically isolated as predicted. Results indicated that genetic isolation of the ad hoc sample was as genetically isolated as predicted, with differentiation well above estimates made in samples from within well-connected habitat separated by similar geographic distances. This work has important practical implications for the control of tsetse and other disease vectors, because it provides a way to identify isolated populations where it will be safer and easier to implement vector control and that should be prioritized as study sites during the development and improvement of vector control methods.Item Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda(PLOS Neglected Tropical Diseases, 2019) Schneider, Daniela I.; Saarman, Norah; Onyango, Maria G.; Hyseni, Chaz; Opiro, Robert; Echodu, Richard; O’Neill, Michelle; Bloch, Danielle; Vigneron, Aure´lien; Johnson, T. J.; Dion, Kirstin; Weiss, Brian L.; Opiyo, Elizabeth; Caccone, Adalgisa; Aksoy, SerapTsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host’s population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.