Browsing by Author "Rubaihayo, P.R."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Biochemical Constituents Influencing the Resistance to Flower Bud Thrips in Cowpea [Vigna Unguiculata (L.) Walp] Germplasm(The Journal of Animal & Plant Sciences, 2018) Agbahoungba, S.; Karungi, J.; Odong, T.L.; Badji, A.; Kumi, F.; Mwila, N.; Rubaihayo, P.R.The flower bud thrips, Megalurothrips sjostedti, is a major pest of cowpea that can cause yield losses of up to 100%. The use of cowpea cultivars resistant to thrips is among the most promising control measures. Six cultivars were evaluated in 2016 in Uganda for resistance to thrips under field conditions and analyzed for total carbon, total reducing sugar, total protein, soluble amino acid, total phenol, flavonoids, antioxidant activity and tannin contents. Data were subjected to analysis of variance, correlation and multiple linear regression analyses. The results showed that the genotypes responded differently to thrips damage and thrips counts in flowers and they presented different concentrations in total reducing sugar, total carbon, soluble amino acid, antioxidant activity, flavonoids and tannin in the plants parts. Cultivar TVU-1509 suffered the least thrips damage (1.03) while WC36 was severely damaged by thrips (6.55). A significant negative correlation was observed between thrips damage scores and total carbon concentration (r=-0.54) indicating that total carbon plays a significant role against thrips damage in cowpea. Increase in the concentration of flavonoids, total reducing sugar, total carbon in the plants contributed to the reduction of thrips damage (coefficient of regression = -1.47; -0.61 and -0.48, respectively) while the increase in the concentration of the soluble amino acid contributed to the increase of thrips damage (coefficient of regression = 2.10), suggesting that these biochemical conferred the resistance of cowpea to flower thrips damage. These biochemical compounds could be promising candidates to bolster cowpea cultivars ’resistance.Item Correlations and Path Analysis of Yield Traits in Sorghum Grown in Southwestern Highlands of Uganda(African Crop Science Journal, 2019) Akatwijuka, R.; Rubaihayo, P.R.; Odong, T.L.The study of relationships among traits is essential for assessing the feasibility of joint selection for two or more traits. Path coefficient analysis partitions correlation coefficient into direct and indirect contributions of various traits towards dependent variable, thus guiding effective selection. A study was conducted to determine the correlation and path coefficients for sorghum (Sorghum bicolor L. Moench) grain yield and quantitative traits among 47 sorghum cultivars collected from southwestern highlands of Uganda. The study was conducted at Kachwekano Research Farm in Kabale District in southwestern Uganda, at an altitude of 2,223 metres above sea level, during the two successive sorghum growing seasons of December 2014 to August 2015 and December 2015 to August 2016. Correlations revealed strong significant trait associations (P<0.001) for grain yield with panicle weight (r=0.938), and moderately strong relationships with panicle width (r=0.619), stem girth (r= 0.674), and leaf width (r=0.576). Grain yield revealed a non-significant negative correlation with days to 50% flowering (r=-0.011). Regression analysis revealed that panicle weight and plant height had the highest direct effect on grain yield of 1.085 and 0.2097, respectively. Path coefficient analysis revealed that stem girth (0.814), leaf width (0.74901) and panicle width (0.713) had the highest indirect contributions to grain yield. The residual effect was low (R=0.11), with high adjusted R2 value (0.89).Item Genetic Diversity among Sorghum Landraces of Southwestern Highlands of Uganda(African Crop Science Journal, 2016) Akatwijuka, R.; Rubaihayo, P.R.; Odong, T.L.Sorghum (Sorghum bicolor L. Moench) is an economic and staple crop in sub-Saharan Africa. The genetic diversity in its germplasm is an invaluable aid for its crop improvement. The objective of this study was to assess the existing genetic diversity among sorghum landraces in the southwestern highlands of Uganda. A total of 47 sorghum landraces, collected from southwestern highlands of Uganda, were characterised using 12 qualitative and 13 quantitative traits. The study was conducted at Kachwekano Research Farm in Kabale District, at an altitude of 2,223 m above sea level, during growing season of December 2014 to August 2015. Panicle shape and compactness were the most varied qualitative traits. Grain yield (1.23 to 11.31 t ha-1) and plant height (144.7 to 351.6 cm) were among quantitative traits that showed high variability. Days to 50% flowering (115 to 130 days) showed the least variability. Results of UPGMA cluster analysis generated a dendrogram with three clusters. Panicle weight, leaf width, stem girth, exertion length, peduncle length, panicle shape and compactness, glume colour and threshability were major traits responsible for the observed clustering (P<0.001). Principal Component Analysis revealed the largest variation contributors.Item Identification of Common Bean Genotypes with Dual Leaf And Pod Resistance to Common Bacterial Blight Disease in Uganda(Crop Science Journal, 2018) Alladassi, B.M.E.; Nkalubo, S.T.; Mukankusi, C.; Kayaga, H.N.; Gibson, P.; Edema, R.; Urrea, C.A.; Kelly, J.D.; Rubaihayo, P.R.Common Bacterial Blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Xap) and Xanthomonas axonopodis pv. phaseoli var. fuscans (Xapf), is a serious disease that affects common bean production worldwide. In Uganda, it is the most severe and widely occurring bacterial disease, causing significant yield losses in common bean. Although various sources of resistance have been developed around the world, none of the varieties grown in Uganda is known to be resistant. The objective of this study was to identify lines with combined leaf and pod resistance for introgression into locally adapted but susceptible Ugandan genotypes. A total of 132 common bean accessions was evaluated in a screenhouse and under field conditions, in an 11x12 alpha lattice design. Genotypes were inoculated with a local isolate in a screenhouse; while the plants were left to undergo natural infestation in field. Results indicated significant differences (P<0.001) in genotypic reactions against the CBB disease, with a range of disease scores of 2.2 - 7.8 on leaves and 2.6 - 7.1 on pods (1-9 CIAT disease scale), suggesting high genetic variability among the tested germplasm. Relatively low correlation (r = 0.39) was observed between leaf and pod reactions, suggesting differential expression of CBB resistance in these two plant organs. Overall, four genotypes, NE2-14-8, NE17-14-29, NE14-09-78 and VAX3, consistently showed resistance in both screenhouse and field evaluations, leaf and pod inoculations and at all sampling stages. These genotypes were, therefore, identified for transferring CBB resistance into Ugandan susceptible market class bean varieties.Item Improvement of Resistance to Fusarium Root Rot through Gene Pyramiding in Common Bean(African Crop Science Journal, 2012) Obala, J.; Mukankusi, C.; Rubaihayo, P.R.; Gibson, P.; Edema, R.Fusarium root rot (FRR), caused by Fusarium solani f.sp. phaseoli, is one of the most serious root rot diseases of common bean (Phaseolus vulgaris L.) throughout the world. Yield losses of up to 84% have been attributed to the disease. Development and deployment of resistant materials is the most feasible approach to managing the disease. The objective of this study was to estimate the number of pyramided Fusarium root rot resistance genes among the four resistant lines and determine their effectiveness in improving levels of resistance to Fusarium root rot in the susceptible bean cultivars. Crosses among four Fusarium root rot (Fusarium solani f.sp. phaseoli) resistant common bean (Phaseolus vulgaris) were developed. They involved six inbred lines, MLB-48-89A (M48), MLB-49-89A (M49), G2333 (G2) and G685 (G6), and two susceptible cultivars, K20 and Kanyebwa, The resistant lines were used to develop a double cross (DC) population. The DC F1 and each resistant parent were crossed to each of the two susceptible cultivars to form five-parent and single crosses, respectively. Developed populations were subjected to Fusarium solani f. sp. phasoeli isolate-3 under screenhouse conditions. There were segregation ratios of 15:1 (χ2 = 1.89, P = 0.17), 61:3 (χ2 = 0.18, P = 0.67) and 249:7 (χ2 = 1.74, P = 0.19) indicating that two, three and four genes independently condition resistance to F. solani in lines G2 x G6, M49 x M48 and (M49 x M48) x (G2 x G6). A good fit of only four genes in the double cross compared to two in the G2 x G6 , and three genes in the M49 x M48 cross suggests that at least one parent in the G2 x G6 cross have the same or closely linked genes as a parent in the M49 x M48 cross. The F1 means of the five-parent cross (FPC) involving either susceptible parent had lower disease scores, though not significantly (P > 0.05), than the single-crosses from that parent. The F2 of both FPC showed less disease than the single-cross (SC) means (P < 0.05) compared to the single-cross (SC) while the F2 of both FPC had a significant negative deviation (P < 0.05). The F2 frequency distributions also showed that the FPC in both Kanyebwa and K20 populations had higher proportions of resistant plants than any of the single crosses in the respective populations. The superior performance of the FPC over the SC demonstrates that combining resistance genes form different FRR resistance sources can provide a stable source of resistance than using single sources of resistance.