Browsing by Author "Rozman, Damjana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Detecting gene–gene interactions from GWAS using diffusion kernel principal components(Bmc Bioinformatics, 2022) Walakira, Andrew; Ocira, Junior; Duroux, Diane; Fouladi, Ramouna; Moškon, Miha; Rozman, Damjana; Steen, Kristel VanGenes and gene products do not function in isolation but as components of complex networks of macromolecules through physical or biochemical interactions. Dependencies of gene mutations on genetic background (i.e., epistasis) are believed to play a role in understanding molecular underpinnings of complex diseases such as inflammatory bowel disease (IBD). However, the process of identifying such interactions is complex due to for instance the curse of high dimensionality, dependencies in the data and non-linearity. Here, we propose a novel approach for robust and computationally efficient epistasis detection. We do so by first reducing dimensionality, per gene via diffusion kernel principal components (kpc). Subsequently, kpc gene summaries are used for downstream analysis including the construction of a gene-based epistasis network. We show that our approach is not only able to recover known IBD associated genes but also additional genes of interest linked to this difficult gastrointestinal disease.Item Guided extraction of genome-scale metabolic models for the integration and analysis of omics data(Computational and Structural Biotechnology Journal, 2021) Walakira, Andrew; Rozman, Damjana; Režen, Tadeja; Mraz, Miha; Moškon, MihaOmics data can be integrated into a reference model using various model extraction methods (MEMs) to yield context-specific genome-scale metabolic models (GEMs). How to chose the appropriate MEM, thresholding rule and threshold remains a challenge. We integrated mouse transcriptomic data from a Cyp51 knockout mice diet experiment (GSE58271) using five MEMs (GIMME, iMAT, FASTCORE, INIT and tINIT) in a combination with a recently published mouse GEM iMM1865. Except for INIT and tINIT, the size of extracted models varied with the MEM used (t-test: p-value < 0.001). The Jaccard index of iMAT models ranged from 0.27 to 1.0. Out of the three factors under study in the experiment (diet, gender and genotype), gender explained most of the vari- ability (> 90%) in PC1 for FASTCORE. In iMAT, each of the three factors explained less than 40% of the variability within PC1, PC2 and PC3. Among all the MEMs, FASTCORE captured the most of the true variability in the data by clustering samples by gender. Our results show that for the efficient use of MEMs in the context of omics data integration and analysis, one should apply various MEMs, thresholding rules, and thresholding values to select the MEM and its configuration that best captures the true variability in the data. This selection can be guided by the methodology as proposed and used in this paper. Moreover, we describe certain approaches that can be used to analyse the results obtained with the selected MEM and to put these results in a biological context.