Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Reza, Tania"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Is aggregated surveillance data a reliable method for constructing tuberculosis care cascades? A secondary data analysis from Uganda
    (PLOS Glob Public Health, 2021) White, Elizabeth B.; Hernandez-Ramırez, Raul U.; Kaos Majwala, Robert; Nalugwa, Talemwa; Reza, Tania; Cattamanchi, Adithya; Katamba, Achilles; Davis, J. Lucian
    To accelerate tuberculosis (TB) control and elimination, reliable data is needed to improve the quality of TB care. We assessed agreement between a surveillance dataset routinely collected for Uganda’s national TB program and a high-fidelity dataset collected from the same source documents for a research study from 32 health facilities in 2017 and 2019 for six measurements: 1) Smear-positive and 2) GeneXpert-positive diagnoses, 3) bacteriologically confirmed and 4) clinically diagnosed treatment initiations, and the number of people initiating TB treatment who were also 5) living with HIV or 6) taking antiretroviral therapy. We measured agreement as the average difference between the two methods, expressed as the average ratio of the surveillance counts to the research data counts, its 95% limits of agreement (LOA), and the concordance correlation coefficient. We used linear mixed models to investigate whether agreement changed over time or was associated with facility characteristics. We found good overall agreement with some variation in the expected facilitylevel agreement for the number of smear positive diagnoses (average ratio [95% LOA]: 1.04 [0.38–2.82]; CCC: 0.78), bacteriologically confirmed treatment initiations (1.07 [0.67–1.70]; 0.82), and people living with HIV (1.11 [0.51–2.41]; 0.82). Agreement was poor for Xpert positives, with surveillance data undercounting relative to research data (0.45 [0.099–2.07]; 0.36). Although surveillance data overcounted relative to research data for clinically diagnosed treatment initiations (1.52 [0.71–3.26]) and number of people taking antiretroviral therapy (1.71 [0.71–4.12]), their agreement as assessed by CCC was not poor (0.82 and 0.62, respectively). Average agreement was similar across study years for all six measurements, but facility-level agreement varied from year to year and was not explained by facility characteristics. In conclusion, the agreement of TB surveillance data with high-fidelity research data was highly variable across measurements and facilities. To advance the use of routine TB data as a quality improvement tool, future research should elucidate and address reasons for variability in its quality.
  • Loading...
    Thumbnail Image
    Item
    Readiness to implement on-site molecular testing for tuberculosis in community health centers in Uganda
    (Implementation Science Communications, 2022) Nalugwa, Talemwa; Handley, Margaret; Shete, Priya; Ojok, Christopher; Nantale, Mariam; Reza, Tania; Katamba, Achilles; Cattamanchi, Adithya; Ackerman, Sara
    Newer molecular testing platforms are now available for deployment at lower-level community health centers. There are limited data on facility- and health worker-level factors that would promote successful adoption of such platforms for rapid tuberculosis (TB) testing and treatment initiation. Our study aimed to assess readiness to implement onsite molecular testing at community health centers in Uganda, a high TB burden country in sub-Saharan Africa. Methods: To understand implementation readiness, we conducted a qualitative assessment guided by the Consolidated Framework for Implementation Research (CFIR) at 6 community health centers in central and eastern Uganda between February and April 2018. We conducted 23 in-depth, semi-structured interviews with health workers involved in TB care at each health center to assess TB-related work practices and readiness to adopt onsite molecular testing using the GeneXpert Edge platform. Interviews were transcribed verbatim and coded for thematic analysis. Results: Participants (N=23) included 6 nurses/nursing assistants, 6 clinicians, 6 laboratory directors/technicians, 1 medical officer, 2 health center directors, and 2 other health workers involved in TB care. Health workers described general enthusiasm that on-site molecular testing could lead to greater efficiencies in TB diagnosis and treatment, including faster turn- around time for TB test results, lack of need for trained laboratory technicians to interpret results, and reduced need to transport sputum specimens to higher level facilities. However, health workers also expressed concerns about implementation feasibility. These included uncertainty about TB infection risk, safety risks from disposal of hazardous waste, a lack of local capacity to provide timely troubleshooting and maintenance services, and concerns about the security of GeneXpert devices and accessories. Health workers also expressed the need for backup batteries to support testing or charging when wall power is unstable. Conclusion: Our study generated a nuanced understanding of modifiable contextual barriers and led to direct revisions of implementation strategies for onsite molecular testing. The findings highlight that novel diagnostics should be implemented along with health system co-interventions that address contextual barriers to their effective uptake. Pre-implementation assessment of stakeholder perspectives, collaborative work processes, and institutional contexts is essential when introducing innovative technology in complex health care settings.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback