Browsing by Author "Pelican, Katharine"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Environmental Determinants Influencing Anthrax Distribution in Queen Elizabeth Protected Area, Western Uganda(Plos one, 2020) Driciru, Margaret; Rwego, Innocent B.; Ndimuligo, Sood A.; Travis, Dominic A.; Mwakapeje, Elibariki R.; Asiimwe, Benon; Ayebare, Samuel; Pelican, KatharineBacillus anthracis, the bacteria that causes anthrax, a disease that primarily affects herbivorous animals, is a soil borne endospore-forming microbe. Environmental distribution of viable spores determines risky landscapes for herbivore exposure and subsequent anthrax outbreaks. Spore survival and longevity depends on suitable conditions in its environment. Anthrax is endemic in Queen Elizabeth Protected Area in western Uganda. Periodic historical outbreaks with significant wildlife losses date to 1950s, but B. anthracis ecological niche in the ecosystem is poorly understood. This study used the Maximum Entropy modeling algorithm method to predict suitable niche and environmental conditions that may support anthrax distribution and spore survival. Model inputs comprised 471 presence-only anthrax occurrence data from park management records of 1956–2010, and 11 predictor variables derived from the World Climatic and Africa Soil Grids online resources, selected considering the ecology of anthrax. The findings revealed predicted suitable niche favoring survival and distribution of anthrax spores as a narrow-restricted corridor within the study area, defined by hot-dry climatic conditions with alkaline soils rich in potassium and calcium. A mean test AUC of 0.94 and predicted probability of 0.93 for anthrax presence were registered. The five most important predictor variables that accounted for 93.8% of model variability were annual precipitation (70.1%), exchangeable potassium (12.6%), annual mean temperature (4.3%), soil pH (3.7%) and calcium (3.1%). The predicted suitable soil properties likely originate from existing sedimentary calcareous gypsum rocks. This has implications for long-term presence of B. anthracis spores and might explain the long history of anthrax experienced in the area. However, occurrence of suitable niche as a restricted hot zone offers opportunities for targeted anthrax surveillance, response and establishment of monitoring strategies in QEPA.Item Preparedness of health care systems for Ebola outbreak response in Kasese and Rubirizi districts, Western Uganda(BMC public health, 2021) Kibuule, Michael; Sekimpi, Deogratias; Agaba, Aggrey; Ali Halage, Abdullah; Jonga, Michael; Manirakiza, Leonard; Kansiime, Catherine; Travis, Dominic; Pelican, Katharine; Rwego, Innocent B.The level of preparedness of the health care workers, the health facility and the entire health system determines the magnitude of the impact of an Ebola Virus Disease (EVD) outbreak as demonstrated by the West African Ebola outbreak. The objective of the study was to assess preparedness of the health care facilities and identify appropriate preparedness measures for Ebola outbreak response in Kasese and Rubirizi districts in western Uganda. Methods: A cross sectional descriptive study was conducted by interviewing 189 health care workers using a structured questionnaire and visits to 22 health facilities to determine the level of health care system preparedness to EVD outbreak. District level infrastructure capabilities, existence of health facility logistics and supplies, and health care workers’ knowledge of EVD was assessed. EVD Preparedness was assessed on infrastructure and logistical capabilities and the level of knowledge of an individual health work about the etiology, control and prevention of EVD. Results: Twelve out of the 22 of the health facilities, especially health center III’s and IV’s, did not have a line budget to respond to EVD when there was a threat of EVD in a nearby country. The majority (n = 13) of the facilities did not have the following: case definition books, rapid response teams and/or committees, burial teams, and simulation drills. There were no personal protective equipment that could be used within 8 h in case of an EVD outbreak in fourteen of the 22 health facilities. All facilities did not have Viral Hemorrhagic Fever (VHF) incident management centers, isolation units, guidelines for burial, and one-meter distance between a health care worker and a patient during triage. Overall, 54% (n = 102) of health care workers (HCWs) did not know the incubation period of EVD. HCWs who had tertiary education (aOR = 5.79; CI = 1.79–18.70; p = 0.003), and were Christian (aOR = 10.47; CI = 1.94–56.4; p = 0.006) were more likely to know about the biology, incubation period, causes and prevention of EVD. Conclusions: Feedback on the level of preparedness for the rural districts helps inform strategies for building capacity of these health centers in terms of infrastructure, logistics and improving knowledge of health care workers.Item Spatio-temporal Epidemiology of Anthrax in Hippopotamus Amphibious in Queen Elizabeth Protected Area, Uganda(PLoS One, 2018) Driciru, Margaret; Rwego, Innocent B.; Asiimwe, Benon; Travis, Dominic A.; Alvarez, Julio; VanderWaal, Kimberly; Pelican, KatharineAnthrax is a zoonotic disease primarily of herbivores, caused by Bacillus anthracis, a bacterium with diverse geographical and global distribution. Globally, livestock outbreaks have declined but in Africa significant outbreaks continue to occur with most countries still categorized as enzootic, hyper endemic or sporadic. Uganda experiences sporadic human and livestock cases. Severe large-scale outbreaks occur periodically in hippos (Hippopotamus amphibious) at Queen Elizabeth Protected Area, where in 2004/2005 and 2010 anthrax killed 437 hippos. Ecological drivers of these outbreaks and potential of hippos to maintain anthrax in the ecosystem remain unknown. This study aimed to describe spatio-temporal patterns of anthrax among hippos; examine significant trends associated with case distributions; and generate hypotheses for investigation of ecological drivers of anthrax.Spatio-temporal patterns of 317 hippo cases in 2004/5 and 137 in 2010 were analyzed. QGIS was used to examine case distributions; Spearman’s nonparametric tests to determine correlations between cases and at-risk hippo populations; permutation models of the spatial scan statistics to examine spatio-temporal clustering of cases; directional tests to determine directionality in epidemic movements; and standard epidemic curves to determine patterns of epidemic propagation.Results showed hippopotamus cases extensively distributed along water shorelines with strong positive correlations (p<0.01) between cases and at-risk populations. Significant (p<0.001) spatio-temporal clustering of cases occurred throughout the epidemics, pointing towards a defined source. Significant directional epidemic spread was detected along water flow gradient (206.6°) in 2004/5 and against flow gradient (20.4°) in 2010. Temporal distributions showed clustered pulsed epidemic waves.These findings suggest mixed point-source propagated pattern of epidemic spread amongst hippos and points to likelihood of indirect spread of anthrax spores between hippos mediated by their social behaviour, forces of water flow, and persistent presence of infectious carcasses amidst schools. This information sheds light on the epidemiology of anthrax in highly social wildlife, can help drive insight into disease control, wildlife conservation, and tourism management, but highlights the need for analytical and longitudinal studies aimed at clarifying the hypotheses.