Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Osra, Faisal"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A facile polymerisation of magnetic coal to enhanced phosphate removal from solution
    (Journal of Environmental Management, 2019-10-28) Kajjumba, George William; Aydın, Serdar; Osra, Faisal; Wasswa, Joseph
    Globally, there are increased threats to available freshwater resources due to pollution, climate change, and increased demand from population growth. Phosphorus is one of the essential nutrients required for animal and plant growth. However, when it is released into freshwater resources in excess amounts, it can become a pollutant through eutrophication. This study aimed to enhance the removal of phosphate from water using modified coal. The coal was magnetised by in-situ synthesis using a precipitation technique. To obtain functional groups and mechanical stability, magnetised coal particles were coated with polyaniline, via the polymerisation of aniline to form Magnetised Unburnt Coal Polyaniline (MUC-PANI). The properties of MUC-PANI were investigated using TGA, BET, XRD, Raman spectroscopy, SEM, and FTIR. TGA reviewed MUC-PANI as 58% magnetised coal and 42% polyaniline, while the specific surface area increased from 30.0 to 42.2 m2/g after modification. SEM indicated a cauliflower structure on the surface of MUC-PANI due to the successful polymerisation of polyaniline. The FTIR spectrum showed successful adsorption of phosphate due to the formation of incipient peak at1008 cm−1. The adsorption kinetic data are better fitted to the Elovich model. The Langmuir adsorption capacity of MUC-PANI is 147.1 mg PO43−/g at 25 °C and pH 5.0 (initial concentration 10-200 mg/L, dose 0.8 g/L). MUC-PANI is a cost-efficient compound for removal of phosphate because it is made from readily available coal.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback