Browsing by Author "Opigo, Jimmy"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Adherence to malaria management guidelines by health care workers in the Busoga sub‑region, eastern Uganda(Malaria Journal, 2022) Mpimbaza, Arthur; Babikako, Harriet; Rutazanna, Damian; Karamagi, Charles; Ndeezi, Grace; Katahoire, Anne; Opigo, Jimmy; Snow, Robert W.; Kalyango, Joan N.Appropriate malaria management is a key malaria control strategy. The objective of this study was to determine health care worker adherence levels to malaria case management guidelines in the Busoga sub-region, Uganda. Methods: Health facility assessments, health care worker (HCW), and patient exit interview (PEI) surveys were conducted at government and private health facilities in the sub-region. All health centres (HC) IVs, IIIs, and a sample of HC IIs, representative of the tiered structure of outpatient service delivery at the district level were targeted. HCWs at these facilities were eligible for participation in the study. For PEIs, 210 patients of all ages presenting with a history of fever for outpatient care at selected facilities in each district were targeted. Patient outcome measures included testing rates, adherence to treatment, dispensing and counselling services as per national guidelines. The primary outcome was appropriate malaria case management, defined as the proportion of patients tested and only prescribed artemether-lumefantrine (AL) if positive. HCW readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and anti-malarials) to provide malaria case management were also assessed. Data were weighted to cater for the disproportionate representation of HC IIs in the study sample. Results: A total of 3936 patients and 1718 HCW from 392 facilities were considered in the analysis. The median age of patients was 14 years; majority (63.4%) females. Most (70.1%) facilities were HCIIs and 72.7% were owned by the government. Malaria testing services were available at > 85% of facilities. AL was in stock at 300 (76.5%) facilities. Of those with a positive result, nearly all were prescribed an anti-malarial, with AL (95.1%) accounting for most prescriptions. Among those prescribed AL, 81.0% were given AL at the facility, lowest at HC IV (60.0%) and government owned (80.1%) facilities, corresponding to AL stock levels. Overall, 86.9% (95%CI 79.7, 90.7) of all enrolled patients received appropriate malaria case management. However, only 50.7% (21.2, 79.7) of patients seen at PFPs received appropriate malaria management. Conclusion: Adherence levels to malaria case management guidelines were good, but with gaps noted mainly in the private sector. The supply chain for AL needs to be strengthened. Interventions to improve practise at PFP facilities should be intensified.Item Challenges and Strategies for Conducting Clinical Research During the COVID-19 Pandemic: Experiences from Resource Limited Settings(European Journal of Clinical Medicine, 2021) Achan, Jane; Serwanga, Asadu; Aanyu, Hellen.T; Opigo, Jimmy; Kyagulanyi, Tonny; Nuwa, Anthony; Magumba, Godfrey; Nakwagala, Fredrick; Marasciulo, Madeleine; Hamade, Prudence; Tibenderana, JamesAs COVID-19 disease surges across much of the world, researchers in different settings have a unique opportunity to address the various research priorities that have been identified. The challenges that containment and mitigation strategies present for research, especially in resource limited settings, could be significant and negatively impact the essential contribution of these settings to COVID-19 research.To describe experiences of conducting research during this pandemic, discuss challenges faced and present strategies implemented to address these challenges.Malaria Consortium recently initiated an observational case series study to assess the magnitude and clinical consequences of co-infection of COVID-19, malaria, and other common infections. This study is being conducted in eight COVID-19 treatment centres in Uganda. Qualitative methods including observations and interviews were utilized to document experiences and mitigating strategies for identified challenges. The main outcomes were a descriptive narrative of experiences conducting this research, discussion of challenges faced, and presentation of strategies implemented to address these challenges.Expedited ethical review and approval facilitated timely initiation of research activities. The primary clinical care teams at each treatment centre performed all study procedures to minimize infection. Given concerns about fomite transmission, considerations arose on how best to handle consent forms that had been signed or thumb-printed by patients to ensure that both hospital and research staff were not exposed to infection. Consenting severely ill or mentally impaired patients was also a challenge, especially when the next of kin was not available. Patient compensation was done through a mobile money/digital platform to avoid potential risks associated with cash. Patients, health care workers and study staff faced significant psychosocial challenges and anxiety that needed to be addressed.These experiences demonstrate that more adaptable and innovative approaches may be needed to support the implementation of research activities during this COVID-19 pandemic. This pandemic should also spur institutional review boards and investigators to respond to emerging challenges by updating policies and procedures around research review and approvals, and modifications in research methods.Item Changing malaria fever test positivity among paediatric admissions to Tororo district hospital, Uganda 2012–2019(Malaria journal, 2020) Mpimbaza, Arthur; Sserwanga, Asadu; Rutazaana, Damian; Kapisi, James; Walemwa, Richard; Suiyanka, Laurissa; Kyalo, David; Kamya, Moses; Opigo, Jimmy; Snow, Robert W.The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. Methods: Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS + second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb + Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. Results: Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012–October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016–December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p < 0.001), and lower during the Bendiocarb IRS (43.5%, difference − 16.8%; 95% CI − 18.7%, − 14.9%) and Actellic IRS (31.3%, difference − 29.0%; 95% CI − 30.3%, − 27.6%, p < 0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb + Actellic) with the second LLIN period compared to the pre-IRS (baseline + first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. Conclusion: IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.Item Efficacy and safety of artemether‑lumefantrine and dihydroartemisinin‑piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria and prevalence of molecular markers associated with artemisinin and partner drug resistance in Uganda(Malaria Journal, 2022) Ebong, Chris; Sserwanga, Asadu; Frances Namuganga, Jane; Kapisi, James; Mpimbaza, Arthur; Gonahasa, Samuel; Asua, Victor; Gudoi, Sam; Kigozi, Ruth; Tibenderana, James; Bwanika, John Bosco; Bosco, Agaba; Rubahika, Denis; Kyabayinze, Daniel; Opigo, Jimmy; Rutazana, Damian; Sebikaari, Gloria; Belay, Kassahun; Niang, Mame; Halsey, Eric S.; Moriarty, Leah F.; Lucchi, Naomi W.; Svigel Souza, Samaly S.; Nsobya, Sam L.; Kamya, Moses R.; Yeka, AdokeIn Uganda, artemether-lumefantrine (AL) is first-line therapy and dihydroartemisinin-piperaquine (DP) second-line therapy for the treatment of uncomplicated malaria. This study evaluated the efficacy and safety of AL and DP in the management of uncomplicated falciparum malaria and measured the prevalence of molecular markers of resistance in three sentinel sites in Uganda from 2018 to 2019. Methods: This was a randomized, open-label, phase IV clinical trial. Children aged 6 months to 10 years with uncomplicated falciparum malaria were randomly assigned to treatment with AL or DP and followed for 28 and 42 days, respectively. Genotyping was used to distinguish recrudescence from new infection, and a Bayesian algorithm was used to assign each treatment failure a posterior probability of recrudescence. For monitoring resistance, Pfk13 and Pfmdr1 genes were Sanger sequenced and plasmepsin-2 copy number was assessed by qPCR. Results: There were no early treatment failures. The uncorrected 28-day cumulative efficacy of AL ranged from 41.2 to 71.2% and the PCR-corrected cumulative 28-day efficacy of AL ranged from 87.2 to 94.4%. The uncorrected 28-day cumulative efficacy of DP ranged from 95.8 to 97.9% and the PCR-corrected cumulative 28-day efficacy of DP ranged from 98.9 to 100%. The uncorrected 42-day efficacy of DP ranged from 73.5 to 87.4% and the PCR-corrected 42-day efficacy of DP ranged from 92.1 to 97.5%. There were no reported serious adverse events associated with any of the regimens. No resistance-associated mutations in the Pfk13 gene were found in the successfully sequenced samples. In the AL arm, the NFD haplotype (N86Y, Y184F, D1246Y) was the predominant Pfmdr1 haplotype, present in 78 of 127 (61%) and 76 of 110 (69%) of the day 0 and day of failure samples, respectively. All the day 0 samples in the DP arm had one copy of the plasmepsin-2 gene. Conclusions: DP remains highly effective and safe for the treatment of uncomplicated malaria in Uganda. Recurrent infections with AL were common. In Busia and Arua, the 95% confidence interval for PCR-corrected AL efficacy fell below 90%. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended. Trial registration The trial was also registered with the Pan African Clinical Trial Registry (https:// pactr. samrc. ac. za/) with study Trial No. PACTR201811640750761.Item The impact of stopping and starting indoor residual spraying on malaria burden in Uganda(Nature communications, 2021) Namuganga, Jane F.; Epstein, Adrienne; Nankabirwa, Joaniter I.; Mpimbaza, Arthur; Kiggundu, Moses; Sserwanga, Asadu; Kapisi, James; Arinaitwe, Emmanuel; Gonahasa, Samuel; Opigo, Jimmy; Ebong, Chris; Staedke, Sarah G.; Shililu, Josephat; Okia, Michael; Rutazaana, Damian; Maiteki-Sebuguzi, Catherine; Belay, Kassahun; Kamya, Moses R.; Dorsey, Grant; Rodriguez-Barraquer, IsabelThe scale-up of malaria control efforts has led to marked reductions in malaria burden over the past twenty years, but progress has slowed. Implementation of indoor residual spraying (IRS) of insecticide, a proven vector control intervention, has been limited and difficult to sustain partly because questions remain on its added impact over widely accepted interventions such as bed nets. Using data from 14 enhanced surveillance health facilities in Uganda, a country with high bed net coverage yet high malaria burden, we estimate the impact of starting and stopping IRS on changes in malaria incidence. We show that stopping IRS was associated with a 5-fold increase in malaria incidence within 10 months, but reinstating IRS was associated with an over 5-fold decrease within 8 months. In areas where IRS was initiated and sustained, malaria incidence dropped by 85% after year 4. IRS could play a critical role in achieving global malaria targets, particularly in areas where progress has stalled.Item Malaria incidence among children less than 5 years during and after cessation of indoor residual spraying in Northern Uganda(Malaria journal, 2017) Okullo, Allen E.; Matovu, Joseph K. B.; Ario, Alex R.; Opigo, Jimmy; Wanzira, Humphrey; Oguttu, David W.; Kalyango, Joan N.In June 2015, a malaria epidemic was confirmed in ten districts of Northern Uganda; after cessation of indoor residual spraying (IRS). Epidemic was defined as an increase in incidence per month beyond one standard deviation above mean incidence of previous 5 years. Trends in malaria incidence among children-under-5-years were analysed so as to describe the extent of change in incidence prior to and after cessation of IRS. Methods: Secondary data on out-patient malaria case numbers for children-under-5-years July 2012 to June 2015 was electronically extracted from the district health management information software2 (DHIS2) for ten districts that had IRS and ten control districts that didn’t have IRS. Data was adjusted by reporting rates, cleaned by smoothing and interpolation and incidence of malaria per 1000 population derived. Population data obtained from 2002 and 2014 census reports. Data on interventions obtained from malaria programme reports, rainfall data obtained from Uganda National Meteorological Authority. Three groups of districts were created; two based on when IRS ended, the third not having IRS. Line graphs were plotted showing malaria incidence vis-à-vis implementation of IRS, mass net distribution and rainfall. Changes in incidence after withdrawal of IRS were obtained using incidence rate ratios (IRR). IRR was calculated as incidence for each month after the last IRS divided by incidence of the IRS month. Poisson regression was used to test statistical significance. Results: Incidence of malaria declined between spray activities in districts that had IRS. Decline in IRR for 4 months after last IRS month was greater in the sprayed than control districts. On the seventh month following cessation of IRS, incidence in sprayed districts rose above that of the last spray month [1.74: 95% CI (1.40–2.15); and 1.26: 95% CI (1.05–1.51)]. Rise in IRR continued from 1.26 to 2.62 (95% CI 2.21–3.12) in June 2015 for districts that ended IRS in April 2014. Peak in rainfall occurred in May 2015. Conclusion: There was sustained control of malaria incidence during IRS implementation. Following withdrawal and peak in rainfall, incidence rose to epidemic proportions. This suggests a plausible link between the malaria epidemic, peak in rainfall and cessation of IRS.Item Private Sector Role, Readiness and Performance for Malaria Case Management in Uganda, 2015(Malaria journal, 2017) Group, ACTwatch; Kaula, Henry; Buyungo, Peter; Opigo, JimmySeveral interventions have been put in place to promote access to quality malaria case management services in Uganda’s private sector, where most people seek treatment. This paper describes evidence using a mixed-method approach to examine the role, readiness and performance of private providers at a national level in Uganda. These data will be useful to inform strategies and policies for improving malaria case management in the private sector.The ACTwatch national anti-malarial outlet survey was conducted concurrently with a fever case management study. The ACTwatch nationally representative anti-malarial outlet survey was conducted in Uganda between May 18th 2015 and July 2nd 2015. A representative sample of sub-counties was selected in 14 urban and 13 rural clusters with probability proportional to size and a census approach was used to identify outlets. Outlets eligible for the survey met at least one of three criteria: (1) one or more anti-malarials were in stock on the day of the survey; (2) one or more anti-malarials were in stock in the 3 months preceding the survey; and/or (3) malaria blood testing (microscopy or RDT) was available. The fever case management study included observations of provider-patient interactions and patient exit interviews. Data were collected between May 20th and August 3rd, 2015. The fever case management study was implemented in the private sector. Potential outlets were identified during the main outlet survey and included in this sub-sample if they had both artemisinin-based combination therapy (ACT) [artemether–lumefantrine (AL)], in stock on the day of survey as well as diagnostic testing available.A total of 9438 outlets were screened for eligibility in the ACTwatch outlet survey and 4328 outlets were found to be stocking anti-malarials and were interviewed. A total of 9330 patients were screened for the fever case management study and 1273 had a complete patient observation and exit interview. Results from the outlet survey illustrate that the majority of anti-malarials were distributed through the private sector (54.3%), with 31.4% of all anti-malarials distributed through drug stores and 14.4% through private for-profit health facilities. Availability of different anti-malarials and diagnostic testing in the private sector was: ACT (80.7%), quality-assured (QA) ACT (72.0%), sulfadoxine–pyrimethamine (SP) (47.1%), quinine (73.2%) and any malaria blood testing (32.9%). Adult QAACT ($1.62) was three times more expensive than SP ($0.48). The results from the fever case management study found 44.4% of respondents received a malaria test, and among those who tested positive for malaria, 60.0% received an ACT, 48.5% received QAACT; 14.4% a non-artemisinin therapy; 14.9% artemether injection, and 42.5% received an antibiotic.The private sector plays an important role in malaria case management in Uganda. While several private sector initiatives have improved availability of QAACT, there are gaps in malaria diagnosis and distribution of non-artemisinin monotherapies persists. Further private sector strategies, including those focusing on drug stores, are needed to increase coverage of parasitological testing and removal of non-artemisinin therapies from the marketplace.Item Rapid shifts in the age‑specific burden of malaria following successful control interventions in four regions of Uganda(Malaria journal, 2020) Kigozi, Simon P.; Kigozi, Ruth N.; Epstein, Adrienne; Mpimbaza, Arthur; Sserwanga, Asadu; Yeka, Adoke; Nankabirwa, Joaniter I.; Halliday, Katherine; Pullan, Rachel L.; Rutazaana, Damian; Sebuguzi, Catherine M.; Opigo, Jimmy; Kamya, Moses R.; Staedke, Sarah G.; Dorsey, Grant; Greenhouse, Bryan; Rodriguez‑Barraquer, IsabelMalaria control using long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) has been associated with reduced transmission throughout Africa. However, the impact of transmission reduction on the age distribution of malaria cases remains unclear. Methods: Over a 10-year period (January 2009 to July 2018), outpatient surveillance data from four health facilities in Uganda were used to estimate the impact of control interventions on temporal changes in the age distribution of malaria cases using multinomial regression. Interventions included mass distribution of LLINs at all sites and IRS at two sites. Results: Overall, 896,550 patient visits were included in the study; 211,632 aged < 5 years, 171,166 aged 5–15 years and 513,752 > 15 years. Over time, the age distribution of patients not suspected of malaria and those malaria negative either declined or remained the same across all sites. In contrast, the age distribution of suspected and confirmed malaria cases increased across all four sites. In the two LLINs-only sites, the proportion of malaria cases in < 5 years decreased from 31 to 16% and 35 to 25%, respectively. In the two sites receiving LLINs plus IRS, these proportions decreased from 58 to 30% and 64 to 47%, respectively. Similarly, in the LLINs-only sites, the proportion of malaria cases > 15 years increased from 40 to 61% and 29 to 39%, respectively. In the sites receiving LLINs plus IRS, these proportions increased from 19 to 44% and 18 to 31%, respectively. Conclusions: These findings demonstrate a shift in the burden of malaria from younger to older individuals following implementation of successful control interventions, which has important implications for malaria prevention, surveillance, case management and control strategies.Item Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010–2019(Malaria journal, 2019) Agaba, Bosco B.; Yeka, Adoke; Nsobya, Sam; Arinaitwe, Emmanuel; Nankabirwa, Joaniter; Opigo, Jimmy; Mbaka, Paul; Seung Lim, Chae; Kalyango, Joan N.; Karamagi, Charles; Kamya, Moses R.Malaria rapid diagnostic tests based on histidine-rich protein-2 have played a vital role in improving malaria case management and surveillance particularly in Africa, where Plasmodium falciparum is predominant. However, their usefulness has been threatened by the emergence of gene deletion on P. falciparum histidine rich protein 2 (pfhrp2) and P. falciparum histidine rich protein 3 (pfhrp3). Use of standard and recommended methods is key for accurate investigation, confirmation and reporting of pfhrp2 and pfhrp3 gene deletion. Methods: A systematic review was conducted to assess the status, methods and approaches that have been used for investigation, confirmation and reporting of pfhrp2 and pfhrp3 gene deletion in Africa. An online search was done using PubMed and MEDLINE Google Scholar for all articles published in English on pfhrp2/3 gene deletion in Africa. Relevant articles that met the inclusion criteria were summarized and assessed based on the protocol recommended by the World Health Organization for confirmation and reporting of pfhrp2/3 gene deletion. Results: The search identified a total of 18 articles out of which 14 (77.7%) fulfilled the criteria for inclusion and were retained for review. The articles were distributed across 12 countries where the pfhrp2 and pfhrp3 gene deletion studies were conducted and reported. The level of pfhrp2/3 gene deletion across selected studies in Africa ranged from the highest 62% to the lowest 0.4%. There was wide variation in methods and approaches including study designs, size and sampling and whether both pfhrp2 and pfhrp3 double deletions or pfhrp2 single deletion were investigated, with a wide variation in laboratory methods. Conclusion: Based on the review, there is evidence of the presence of pfhrp2/3 gene-deleted P. falciparum parasites in Africa. The approaches and methods used for investigation, confirmation and reporting of pfhrp2/3 deleted parasites have varied between studies and across countries. Countries that are considering plans to investigate, confirm and report pfhrp2/3 deletion should use recommended standard and harmonized methods to prevent unnecessary recommendations for costly switch of RDTs in Africa.