Browsing by Author "Ocan, David"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Influence of environment on soybean [Glycine max (L.) Merr.] resistance to groundnut leaf miner, Aproaerema modicella (Deventer) in Uganda(Journal of Plant Breeding and Crop Science, 2018) Pembele Ibanda, Angele; Karungi, Jeninah; Malinga, Geoffrey Maxwell; Adjumati Tanzito, Georges; Ocan, David; Badji, Arfang; Mwila, Natasha; Lapaka Odong, Thomas; Tukamuhabwa, Phinehas; Rubaihayo, PatrickGroundnut leaf miner (GLM) [Aproaerema modicella (Deventer)] is a serious problem for soybean cultivation in Uganda causing yield losses of up to 100%. The use of soybean [Glycine max (L.) Merr.] cultivars resistant to GLM attack is an important strategy in the integrated pest management program. The aim of this study was to determine the environment × genotype interaction influence on the soybean resistance traits to GLM attack. Eighteen soybean genotypes were evaluated for resistance to GLM attack. The experiment was set up using randomized complete block design replicated three times under natural pest infestation in Budaka (Eastern) and Arua (Northern) districts in Uganda. Data were subjected to analysis of variance, Pearson’s phenotypic correlation and cluster analysis. Highly significant (p < 0.001) differences among the genotypes were recorded for all the studied traits, except the number of pupae per plant which was significant (p < 0.05). GLM incidence and severity had significant negative correlations with rainfall and relative humidity. However, there were significant positive correlations between minimum temperature and GLM incidence as well as severity for most of the genotypes. Soybean genotypes VI046160 and VI046167 could be used as parents in breeding for resistance to GLM pest. Areas with high rainfall and humidity would be recommended for soybean production to minimize infestation by GLM.Item Influence of environment on soybean [Glycine max (L.) Merr.] resistance to groundnut leaf miner, Aproaerema modicella (Deventer) in Uganda(Journal of Plant Breeding and Crop Science, 2018) Pembele Ibanda, Angele; Karungi, Jeninah; Malinga, Geoffrey Maxwell; Adjumati Tanzito, Georges; Ocan, David; Badji, Arfang; Mwila, Natasha; Lapaka Odong, Thomas; Tukamuhabwa, Phinehas; Rubaihayo, PatrickGroundnut leaf miner (GLM) [Aproaerema modicella (Deventer)] is a serious problem for soybean cultivation in Uganda causing yield losses of up to 100%. The use of soybean [Glycine max (L.) Merr.] cultivars resistant to GLM attack is an important strategy in the integrated pest management program. The aim of this study was to determine the environment × genotype interaction influence on the soybean resistance traits to GLM attack. Eighteen soybean genotypes were evaluated for resistance to GLM attack. The experiment was set up using randomized complete block design replicated three times under natural pest infestation in Budaka (Eastern) and Arua (Northern) districts in Uganda. Data were subjected to analysis of variance, Pearson’s phenotypic correlation and cluster analysis. Highly significant (p < 0.001) differences among the genotypes were recorded for all the studied traits, except the number of pupae per plant which was significant (p < 0.05). GLM incidence and severity had significant negative correlations with rainfall and relative humidity. However, there were significant positive correlations between minimum temperature and GLM incidence as well as severity for most of the genotypes. Soybean genotypes VI046160 and VI046167 could be used as parents in breeding for resistance to GLM pest. Areas with high rainfall and humidity would be recommended for soybean production to minimize infestation by GLM.Item Volatile Organic Compound Based Markers for the Aroma Trait of Rice Grain(Journal of Agricultural Science, 2020) Ocan, David; Rongrong, Zhang; Odoch, Martin; Nuwamanya, Ephraim; Ibanda, Angele P.; Odong, Thomas L.; Lamo, Jimmy; Fitzgerald, Anne M.; Daygon, Venea D.; Rubaihayo, Patrick R.A study was conducted to determine the volatile organic compounds (VOCs) associated with rice grain aroma in 37 commonly grown lines within Uganda, as well as elites. The aim of the study was to identify potential volatile biochemical markers, if any, for the rice grain aroma trait. Certified rice seeds were obtained from the Uganda National Crops Resources Research Institute germplasm collection. The seeds were sown into experimental plots, under field conditions and the mature paddy harvested. Polished rice grains were heated to 80 oC and the liberated VOCs subjected to untargeted metabolite analysis using gas chromatography-time-of-flight mass spectrometry. In total, nine functional groups were present; hydrocarbons, alcohols, ketones, aldehydes, N-containing compounds, S-containing compounds, esters, oxygen heterocycles and carboxylic acids. More specifically, 148 VOCs were identified across the 37 rice lines, of which 48 (32.4%) including 2-acetyl-1-pyrroline (2-AP) appeared to elucidate the difference between non-aromatic and aromatic rice. Furthermore, 41 (27.7%) VOCs were found to be significantly correlated with 2-AP abundance, the principle rice aroma compound. Amongst the 41 VOCs, only ten compounds were found to contribute highly towards variation in 2-AP abundance, indicative of their possible modulation roles in regard to rice aroma. Within the ten influential volatiles, three aroma active compounds; toluene, 1-hexanol, 2-ethyl and heptane, 2,2,4,6,6-pentamethyl- were established as the most reliable biochemical surrogates to the rice aroma trait. Thus, the aforementioned compounds may be used in rice breeding programme for enhancing development of the grain aroma trait.