Browsing by Author "Nyehangane, Dan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Artemether-lumefantrine to treat malaria in pregnancy is associated with reduced placental haemozoin deposition compared to quinine in a randomized controlled trial(Malaria journal, 2012) Muehlenbachs, Atis; Nabasumba, Carolyn; McGready, Rose; Turyakira, Eleanor; Tumwebaze, Benon; Dhorda, Mehul; Nyehangane, Dan; Nalusaji, Aisha; Nosten, François; Guerin, Philippe J.; Piola, PatriceData on efficacy of artemisinin-based combination therapy (ACT) to treat Plasmodium falciparum during pregnancy in sub-Saharan Africa is scarce. A recent open label, randomized controlled trial in Mbarara, Uganda demonstrated that artemether-lumefantrine (AL) is not inferior to quinine to treat uncomplicated malaria in pregnancy. Haemozoin can persist in the placenta following clearance of parasites, however there is no data whether ACT can influence the amount of haemozoin or the dynamics of haemozoin clearance. Methods: Women attending antenatal clinics with weekly screening and positive blood smears by microscopy were eligible to participate in the trial and were followed to delivery. Placental haemozoin deposition and inflammation were assessed by histology. To determine whether AL was associated with increased haemozoin clearance, population haemozoin clearance curves were calculated based on the longitudinal data. Results: Of 152 women enrolled in each arm, there were 97 and 98 placental biopsies obtained in the AL and quinine arms, respectively. AL was associated with decreased rates of moderate to high grade haemozoin deposition (13.3% versus 25.8%), which remained significant after correcting for gravidity, time of infection, re-infection, and parasitaemia. The amount of haemozoin proportionately decreased with the duration of time between treatment and delivery and this decline was greater in the AL arm. Haemozoin was not detected in one third of biopsies and the prevalence of inflammation was low, reflecting the efficacy of antenatal care with early detection and prompt treatment of malaria. Conclusions: Placental haemozoin deposition was decreased in the AL arm demonstrating a relationship between pharmacological properties of drug to treat antenatal malaria and placental pathology at delivery. Histology may be considered an informative outcome for clinical trials to evaluate malaria control in pregnancy. Trial registration: REGISTRY: http://clinicaltrials.gov/ct2/show/NCT00495508Item Inhaled Nitric Oxide as an Adjunctive Treatment for Cerebral Malaria in Children: A Phase II Randomized Open-Label Clinical Trial(Oxford University Press, 2015) Mwanga-Amumpaire, Juliet; Carroll, Ryan W.; Baudin, Elisabeth; Kemigisha, Elisabeth; Nampijja, Dorah; Mworozi, Kenneth; Santorino, Data; Nyehangane, Dan; Nathan, Daniel I.; De Beaudrap, Pierre; Etard, Jean-François; Feelisch, Martin; Fernandez, Bernadette O.; Berssenbrugge, Annie; Bangsberg, David; Bloch, Kenneth D.; Boum, Yap; Zapol, Warren M.Children with cerebral malaria (CM) have high rates of mortality and neurologic sequelae. Nitric oxide (NO) metabolite levels in plasma and urine are reduced in CM. Methods. This randomized trial assessed the efficacy of inhaled NO versus nitrogen (N2) as an adjunctive treatment for CM patients receiving intravenous artesunate.We hypothesized that patients treated with NO would have a greater increase of the malaria biomarker, plasma angiopoietin-1 (Ang-1) after 48 hours of treatment. Results. Ninety-two children with CM were randomized to receive either inhaled 80 part per million NO or N2 for 48 or more hours. Plasma Ang-1 levels increased in both treatment groups, but there was no difference between the groups at 48 hours (P = not significant [NS]). Plasma Ang-2 and cytokine levels (tumor necrosis factor-α, interferon- γ, interleukin [IL]-1β, IL-6, IL-10, and monocyte chemoattractant protein-1) decreased between inclusion and 48 hours in both treatment groups, but there was no difference between the groups (P = NS). Nitric oxide metabolite levels—blood methemoglobin and plasma nitrate—increased in patients treated with NO (both P < .05). Seven patients in the N2 group and 4 patients in the NO group died. Five patients in the N2 group and 6 in the NO group had neurological sequelae at hospital discharge. Conclusions. Breathing NO as an adjunctive treatment for CM for a minimum of 48 hours was safe, increased blood methemoglobin and plasma nitrate levels, but did not result in a greater increase of plasma Ang-1 levels at 48 hours.Item Point-of-Care Approaches for Meningitis Diagnosis in a Low-Resource Setting (Southwestern Uganda): Observational Cohort Study Protocol of the “PI-POC” Trial(JMIR research protocols, 2020) Gaudenzi, Giulia; Kumbakumba, Elias; Rasti, Reza; Nanjebe, Deborah; Réu, Pedro; Nyehangane, Dan; Mårtensson, Andreas; Nassejje, Milly; Karlsson, Jens; Mzee, John; Nilsson, Peter; Businge, Stephen; Loh, Edmund; Boum, Yap; Andersson-Svahn, Helene; Gantelius, Jesper; Mwanga-Amumpaire, Juliet; Alfvén, TobiasA timely differential diagnostic is essential to identify the etiology of central nervous system (CNS) infections in children, in order to facilitate targeted treatment, manage patients, and improve clinical outcome. Objective: The Pediatric Infection-Point-of-Care (PI-POC) trial is investigating novel methods to improve and strengthen the differential diagnostics of suspected childhood CNS infections in low-income health systems such as those in Southwestern Uganda. This will be achieved by evaluating (1) a novel DNA-based diagnostic assay for CNS infections, (2) a commercially available multiplex PCR-based meningitis/encephalitis (ME) panel for clinical use in a facility-limited laboratory setting, (3) proteomics profiling of blood from children with severe CNS infection as compared to outpatient controls with fever yet not severely ill, and (4) Myxovirus resistance protein A (MxA) as a biomarker in blood for viral CNS infection. Further changes in the etiology of childhood CNS infections after the introduction of the pneumococcal conjugate vaccine against Streptococcus pneumoniae will be investigated. In addition, the carriage and invasive rate of Neisseria meningitidis will be recorded and serotyped, and the expression of its major virulence factor (polysaccharide capsule) will be investigated. Methods: The PI-POC trial is a prospective observational study of children including newborns up to 12 years of age with clinical features of CNS infection, and age-/sex-matched outpatient controls with fever yet not severely ill. Participants are recruited at 2 Pediatric clinics in Mbarara, Uganda. Cerebrospinal fluid (for cases only), blood, and nasopharyngeal (NP) swabs (for both cases and controls) sampled at both clinics are analyzed at the Epicentre Research Laboratory through gold-standard methods for CNS infection diagnosis (microscopy, biochemistry, and culture) and a commercially available ME panel for multiplex PCR analyses of the cerebrospinal fluid. An additional blood sample from cases is collected on day 3 after admission. After initial clinical analyses in Mbarara, samples will be transported to Stockholm, Sweden for (1) validation analyses of a novel nucleic acid–based POC test, (2) biomarker research, and (3) serotyping and molecular characterization of S. pneumoniae and N. meningitidis. Results: A pilot study was performed from January to April 2019. The PI-POC trial enrollment of patients begun in April 2019 and will continue until September 2020, to include up to 300 cases and controls. Preliminary results from the PI-POC study are expected by the end of 2020. Conclusions: The findings from the PI-POC study can potentially facilitate rapid etiological diagnosis of CNS infections in low-resource settings and allow for novel methods for determination of the severity of CNS infection in such environment.