Browsing by Author "Nassanga, Beatrice"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item BCG-Induced Non-specific Effects on Heterologous Infectious Disease in Ugandan Neonates: an Investigator-blind Randomised Controlled trial(The Lancet Infectious Diseases, 2021) Prentice, Sarah; Nassanga, Beatrice; Webb, Emily L.; Akello, Florence; Kiwudhu, Fred; Akurut, Hellen; Elliott, Alison M.; Cose, StephenTrials done in infants with low birthweight in west Africa suggest that BCG vaccination reduces all-cause mortality in the neonatal period, probably because of heterologous protection against non-tuberculous infections. This study investigated whether BCG alters all-cause infectious disease morbidity in healthy infants in a different high-mortality setting, and explored whether the changes are mediated via trained innate immunity. This was an investigator-blind, randomised, controlled trial done at one hospital in Entebbe, Uganda. Infants who were born unwell (ie, those who were not well enough to be discharged directly home from the labour ward because they required medical intervention), with major congenital malformations, to mothers with HIV, into families with known or suspected tuberculosis, or for whom cord blood samples could not be taken, were excluded from the study. Any other infant well enough to be discharged directly from the labour ward was eligible for inclusion, with no limitation on gestational age or birthweight. Participants were recruited at birth and randomly assigned (1:1) to receive standard dose BCG 1331 (BCG-Danish) on the day of birth or at age 6 weeks (computer-generated randomisation, block sizes of 24, stratified by sex). Investigators and clinicians were masked to group assignment; parents were not masked. Participants were clinically followed up to age 10 weeks and contributed blood samples to one of three immunological substudies. The primary clinical outcome was physician-diagnosed non-tuberculous infectious disease incidence. Primary immunological outcomes were histone trimethylation at the promoter region of TNF, IL6, and IL1B; ex-vivo production of TNF, IL-6, IL-1β, IL-10, and IFNγ after heterologous stimulation; and transferrin saturation and hepcidin levels. All outcomes were analysed in the modified intention-to-treat population of all randomly assigned participants except those whose for whom consent was withdrawn. This trial is registered with the International Standard Randomised Controlled Trial Number registry (#59683017). Between Sept 25, 2014, and July 31, 2015, 560 participants were enrolled and randomly assigned to receive BCG at birth (n=280) or age 6 weeks (n=280). 12 participants assigned to receive BCG at birth and 11 participants assigned to receive BCG at age 6 weeks were withdrawn from the study by their parents shortly after randomisation and were not included in analyses. During the first 6 weeks of life before the infants in the delayed vaccination group received BCG vaccination, physician-diagnosed non-tuberculous infectious disease incidence was lower in infants in the BCG at birth group than in the delayed group (98 presentations in the BCG at birth group vs 129 in the delayed BCG group; hazard ratio [HR] 0·71 [95% CI 0·53–0·95], p=0·023). After BCG in the delayed group (ie, during the age 6–10 weeks follow-up), there was no significant difference in non-tuberculous infectious disease incidence between the groups (88 presentations vs 76 presentations; HR 1·10 [0·87–1·40], p=0·62). BCG at birth inhibited the increase in histone trimethylation at the TNF promoter in peripheral blood mononuclear cells occurring in the first 6 weeks of life. H3K4me3 geometric mean fold-increases were 3·1 times lower at the TNF promoter (p=0·018), 2·5 times lower at the IL6 promoter (p=0·20), and 3·1 times lower at the IL1B promoter (p=0·082) and H3K9me3 geometric mean fold-increases were 8·9 times lower at the TNF promoter (p=0·0046), 1·2 times lower at the IL6 promoter (p=0·75), and 4·6 times lower at the IL1B promoter (p=0·068), in BCG-vaccinated (BCG at birth group) versus BCG-naive (delayed BCG group) infants. No clear effect of BCG on ex-vivo production of TNF, IL-6, IL-1β, IL-10, and IFNγ after heterologous stimulation, or transferrin saturation and hepcidin concentration, was detected (geometric mean ratios between 0·68 and 1·68; p≥0·038 for all comparisons). BCG vaccination protects against non-tuberculous infectious disease during the neonatal period, in addition to having tuberculosis-specific effects. Prioritisation of BCG on the first day of life in high-mortality settings might have significant public-health benefits through reductions in all-cause infectious morbidity and mortality.Item The Effect of Current Schistosoma Mansoni Infection on the Immunogenicity of A Candidate TB vaccine, MVA85A, in BCG Vaccinated Adolescents: An open-label trial(PLoS neglected tropical diseases, 2017) Wajja, Anne; Kizito, Dennison; Nassanga, Beatrice; Nalwoga, Angela; Kabagenyi, Joyce; Kimuda, Simon; Galiwango, Ronald; Mutonyi, Gertrude; Vermaak, Samantha; Tukahebwa, Edridah; McShane, HelenHelminth infection may affect vaccine immunogenicity and efficacy. Adolescents, a target population for tuberculosis booster vaccines, often have a high helminth burden. We investigated effects of Schistosoma mansoni (Sm) on the immunogenicity and safety of MVA85A, a model candidate tuberculosis vaccine, in BCG-vaccinated Ugandan adolescents.In this phase II open label trial we enrolled 36 healthy, previously BCG-vaccinated adolescents, 18 with no helminth infection detected, 18 with Sm only. The primary outcome was immunogenicity measured by Ag85A-specific interferon gamma ELISpot assay. Tuberculosis and schistosome-specific responses were also assessed by whole-blood stimulation and multiplex cytokine assay, and by antibody ELISAs.Ag85A-specific cellular responses increased significantly following immunisation but with no differences between the two groups. Sm infection was associated with higher pre-immunisation Ag85A-specific IgG4 but with no change in antibody levels following immunisation. There were no serious adverse events. Most reactogenicity events were of mild or moderate severity and resolved quickly.The significant Ag85A-specific T cell responses and lack of difference between Sm-infected and uninfected participants is encouraging for tuberculosis vaccine development. The implications of pre-existing Ag85A-specific IgG4 antibodies for protective immunity against tuberculosis among those infected with Sm are not known. MVA85A was safe in this population.Item Safety and immunogenicity of ChAdOx1 85A prime followed by MVA85A boost compared with BCG revaccination among Ugandan adolescents who received BCG at birth: a randomised, open-label trial(Elsevier Ltd, 2024-03) Wajja, Anne; Nassanga, Beatrice; Natukunda, Agnes; Serubanja, Joel; Tumusiime, Josephine; Akurut, Helen; Oduru, Gloria; Nassuuna, Jacent; Kabagenyi, Joyce; Morrison, Hazel; Scott, Hannah; Doherty, Rebecca Powell; Marshall, Julia L; Puig, Ingrid Cabrera; Cose, Stephen; Kaleebu, Pontiano; Webb, Emily L; Satti, Iman; McShane, Helen; Elliott, Alison M; Namutebi, Milly; Nakazibwe, Esther; Onen, Caroline; Apuule, Barbara; Akello, Florence; Mukasa, Mike; Nnaluwooza, Marble; Sewankambo, Moses; Kiwanuka, Sam; Kiwudhu, Fred; Imede, Esther; Nkurunungi, Gyaviira; Nakawungu, Prossy Kabuubi; Kabami, Grace; Nuwagaba, Emmanuel; Akello, MirriamAbstract BACKGROUNDBCG confers reduced, variable protection against pulmonary tuberculosis. A more effective vaccine is needed. We evaluated the safety and immunogenicity of candidate regimen ChAdOx1 85A-MVA85A compared with BCG revaccination among Ugandan adolescents.METHODSAfter ChAdOx1 85A dose escalation and age de-escalation, we did a randomised open-label phase 2a trial among healthy adolescents aged 12-17 years, who were BCG vaccinated at birth, without evident tuberculosis exposure, in Entebbe, Uganda. Participants were randomly assigned (1:1) using a block size of 6, to ChAdOx1 85A followed by MVA85A (on day 56) or BCG (Moscow strain). Laboratory staff were masked to group assignment. Primary outcomes were solicited and unsolicited adverse events (AEs) up to day 28 and serious adverse events (SAEs) throughout the trial; and IFN-γ ELISpot response to antigen 85A (day 63 [geometric mean] and days 0-224 [area under the curve; AUC).FINDINGSSix adults (group 1, n=3; group 2, n=3) and six adolescents (group 3, n=3; group 4, n=3) were enrolled in the ChAdOx1 85A-only dose-escalation and age de-escalation studies (July to August, 2019). In the phase 2a trial, 60 adolescents were randomly assigned to ChAdOx1 85A-MVA85A (group 5, n=30) or BCG (group 6, n=30; December, 2019, to October, 2020). All 60 participants from groups 5 and 6 were included in the safety analysis, with 28 of 30 from group 5 (ChAdOx1 85A-MVA85A) and 29 of 30 from group 6 (BCG revaccination) analysed for immunogenicity outcomes. In the randomised trial, 60 AEs were reported among 23 (77%) of 30 participants following ChAdOx1 85A-MVA85A, 31 were systemic, with one severe event that occurred after the MVA85A boost that was rapidly self-limiting. All 30 participants in the BCG revaccination group reported at least one mild to moderate solicited AE; most were local reactions. There were no SAEs in either group. Ag85A-specific IFN-γ ELISpot responses peaked on day 63 in the ChAdOx1 85A-MVA85A group and were higher in the ChAdOx1 85A-MVA85A group compared with the BCG revaccination group (geometric mean ratio 30·59 [95% CI 17·46-53·59], p<0·0001, day 63; AUC mean difference 57 091 [95% CI 40 524-73 658], p<0·0001, days 0-224).INTERPRETATIONThe ChAdOx1 85A-MVA85A regimen was safe and induced stronger Ag85A-specific responses than BCG revaccination. Our findings support further development of booster tuberculosis vaccines.FUNDINGUK Research and Innovations and Medical Research Council.TRANSLATIONSFor the Swahili and Luganda translations of the abstract see Supplementary Materials section.Item Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration(ERJ open research,, 2018) Pembrey, Lucy; Barreto, Mauricio L.; Douwes, Jeroen; Cooper, Philip; Henderson, John; Mpairwe, Harriet; Ardura-Garcia, Cristina; Chico, Martha; Brooks, Collin; Cruz, Alvaro A.; Elliott, Alison M.; Figueiredo, Camila A.; Langan, Sinéad M.; Nassanga, Beatrice; Ring, Susan; Rodrigues, Laura C.; Pearce, NeilThe World Asthma Phenotypes (WASP) study started in 2016 and has been conducted in five centres, in the UK, New Zealand, Brazil, Ecuador and Uganda. The objectives of this study are to combine detailed biomarker and clinical information in order to 1) better understand and characterise asthma phenotypes in high-income countries (HICs) and low and middle-income countries (LMICs), and in high and low prevalence centres; 2) compare phenotype characteristics, including clinical severity; 3) assess the risk factors for each phenotype; and 4) assess how the distribution of phenotypes differs between high prevalence and low prevalence centres. Here we present the rationale and protocol for the WASP study to enable other centres around the world to carry out similar analyses using a standardised protocol. Large collaborative and integrative studies like this are essential to further our understanding of asthma phenotypes. The findings of this study will help elucidate the aetiological mechanisms of asthma and might potentially identify new causes and guide the development of new treatments, thereby enabling better management and prevention of asthma in both HICs and LMICs.