Browsing by Author "Namulondo, Joyce"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Gene Expression Changes in Mammalian Hosts during Schistosomiasis(Open Research Africa, 2021) Namulondo, Joyce; Mulindwa, Julius; Nyangiri, Oscar A.; Egesa, Moses; Noyes, Harry; Matovu, EnockSchistosomiasis affects over 250 million people worldwide with an estimated mortality of more than 200,000 deaths per year in sub-Saharan Africa. Efforts to control schistosomiasis in the affected areas have mainly relied on mass administration of praziquantel, which kills adult but not immature worms of all Schistosoma species. Mammalian hosts respond differently to Schistosoma infection with some being more susceptible than others, which is associated with risk factors such as sociodemographic, epidemiological, immunological and/or genetic. Host genetic factors play a major role in influencing molecular processes in response to schistosomiasis as shown in gene expression studies. These studies highlight gene profiles expressed at different time points of infection using model animals. Immune function related genes; cytokines (Th1 and Th17) are upregulated earlier in infection and Th2 upregulated later indicating a mixed Th1/Th2 response. However, Th1 response has been shown to be sustained in S. japonicum infection. Immune mediators such as matrix metalloproteinases (Mmps) and tissue inhibitors of matrix metalloproteinases (Timps) are expressed later in the infection and these are linked to wound healing and fibrosis. Downregulation of metabolic associated genes is recorded in later stages of infection. Most mammalian host gene expression studies have been done using rodent models, with fewer in larger hosts such as bovines and humans. The majority of these studies have focused on S. japonicum infections and less on S. haematobium and S. mansoni infections (the two species that cause most global infections). The few human schistosomiasis gene expression studies so far have focused on S. japonicum and S. haematobium infections and none on S. mansoni, as far as we are aware. This highlights a paucity of gene expression data in humans, specifically with S. mansoni infection. This data is important to understand the disease pathology, identify biomarkers, diagnostics and possible drug targets.Item Severe COVID-19 in Uganda across Two Epidemic Phases: A Prospective Cohort Study(The American journal of tropical medicine and hygiene, 2021) Bakamutumaho, Barnabas; Cummings, Matthew J.; Owor, Nicholas; Kayiwa, John; Namulondo, Joyce; Byaruhanga, Timothy; Muwanga, Moses; Nsereko, Christopher; Mutonyi, Roselyn; Achan, Josephine; wanyenze, Lucy; Ndazarwe, Alice; Nakanjako, Ruth; Natuhwera, Richard; Nsangi, Annet; Bosa, Henry Kyobe; Ocom, Felix; Kikaire, Bernard; Lutwama, Julius J.Among a prospective cohort of children and adults admitted to a national COVID-19 treatment unit in Uganda from March to December 2020, we characterized the epidemiology of and risk factors for severe illness. Across two epidemic phases differentiated by varying levels of community transmission, the proportion of patients admitted with WHO-defined severe COVID-19 ranged from 5% (7/146; 95% CI: 2–10) to 33% (41/124; 95% CI: 25–42); 21% (26/124; 95% CI: 14–29%) of patients admitted during the peak phase received oxygen therapy. Severe COVID-19 was associated with older age, male sex, and longer duration of illness before admission. Coinfection with HIV was not associated with illness severity; malaria or tuberculosis coinfection was rare. No patients died during admission. Despite low mortality, hospital incidence of severe COVID-19 during the first epidemic peak in Uganda was substantial. Improvements in vaccine deployment and acute care capacity, including oxygen delivery, are urgently needed to prevent and manage severe COVID-19 in sub-Saharan Africa.Item Transcriptome analysis of peripheral blood of Schistosoma Mansoni Infected Children from the Albert Nile Region in Uganda Reveals Genes Implicated in Fibrosis Pathology.(bioRxiv, 2023) Namulondo, Joyce; Nyangiri, Oscar Asanya; Kimuda, Magambo Phillip; Nambala, Peter; Nassuuna, Jacent; Egesa, Moses; Nerima, Barbara; Biryomumaisho, Savino; Nabukenya, Immaculate; Drago, Kato; Tweyongyere, Robert; Matovu, Enock; Mulindwa, Julius; Mugasa, Claire MackOver 290 million people are infected by schistosomes worldwide. Schistosomiasis control efforts focus on mass drug treatment with praziquantel (PZQ), a drug that kills the adult worm of all Schistosoma species. Nonetheless, re-infections have continued to be detected in endemic areas with individuals living in the same area presenting with varying infection intensities. Our objective was to characterize the transcriptome profiles in peripheral blood of children between 10 - 15 years with varying intensities of Schistosoma mansoni infection living along the Albert Nile in Uganda. RNA extracted from peripheral blood collected from 44 S. mansoni infected (34 high and 10 low by circulating anodic antigen [CAA] level) and 20 uninfected children was sequenced using Illumina NovaSeq S4 and the reads aligned to the GRCh38 human genome. Differential gene expression analysis was done using DESeq2 and enriched pathways in differentially expressed genes (DEGs) were identified using REACTOME. Principal component analysis revealed clustering of gene expression by gender when S. mansoni infected children were compared with uninfected children. In addition, we identified 14 DEGs between S. mansoni infected and uninfected individuals, 56 DEGs between children with high infection intensity and uninfected individuals, 33 DEGs between those with high infection intensity and low infection intensity and no DEGs between those with low infection and uninfected individuals. We also observed upregulation and downregulation of some DEGs that are associated with fibrosis and its regulation. These data suggest expression of fibrosis associated genes as well as genes that regulate fibrosis in S. mansoni infection. The relatively few significant DEGS observed in children with schistosomiasis suggests that chronic S. mansoni infection is a stealth infection that does not stimulate a strong immune response.