Browsing by Author "Mwanjalolo Majaliwa, Jackson"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Allometric relationships and carbon content for biomass-carbon estimation of East African Highland Bananas (Musa spp. AAA-EAHB) cv. Kibuzi, Nakitembe, Enyeru and Nakinyika(African Journal of Agricultural Research, 2018) Kamusingize, Daphine; Mwanjalolo Majaliwa, Jackson; Komutunga, Everline; Tumwebaze, Susan; Nowakunda, Kephas; Namanya, Priver; Kubiriba, JeromeGlobally, interests to increase carbon stocks have gained momentum in both woody and non-woody ecosystems. Despite efforts made to generate appropriate methods to estimate these stocks, most equations developed do not cater for intraspecific variabilities across e.g. species, regions or growth stages; especially in the case of bananas. Therefore, there is need to develop more robust equations to improve on the precision of biomass-carbon prediction especially at local scales to facilitate estimation of specific carbon stocks often lost in global assessments. This study aimed at developing cultivarspecific biomass estimation relationships and determining carbon content of EAHB cultivars at two growth stages. Plant data were collected purposively using destructive sampling techniques on farmers’ plots for 4 cultivars (Kibuzi, Nakitembe, Enyeru and Nakinyika) in two agro-ecological zones: the L. Victoria crescent and the South-western farmlands in the districts of Lwengo and Mbarara respectively. Results show that biomass differed across cultivars (P<0.001); hence four equations (Enyeru, Nakinyika, Kibuzi_Nakitembe and Generic) were developed following an exponential function, y=Aexp(ax), using diameter at breast height (DBH) as the predictor variable with an R2 range of 82-94%. EAHB mean carbon content varied significantly with growth stage (P<0.05) (47.6% for maiden plants before flowering and 48.8% for mature plants with a developed bunch). This study concludes that it is important to develop cultivar-specific equations for biomass-carbon estimation of EAHB cultivars to help assess their contribution to the carbon cycle especially in future studies.Item Carbon sequestration potential of East African Highland Banana cultivars (Musa spp. AAA-EAHB) cv. Kibuzi, Nakitembe, Enyeru and Nakinyika in Uganda(Journal of Soil Science and Environmental Management, 2017) Kamusingize, Daphine; Mwanjalolo Majaliwa, Jackson; Komutunga, Everline; Tumwebaze, Susan; Nowakunda, Kephas; Namanya, Priver; Kubiriba, JeromeDespite the global interest to increase the world's carbon stocks, most carbon sequestration strategies have largely depended on woody ecosystems whose production is threatened by the continuous shortage of land, hence the need to explore viable alternatives. The potential of bananas to sequester carbon has been reported but there is limited knowledge on the performance of various cultivars as specific carbon stocks are often lost in global assessments. Therefore, this study aimed at exploring the potential of and variability in carbon stocks of selected East African Highland Banana (EAHB) cultivars. Plant and soil data were collected using destructive and non-destructive techniques in 30×30m2 sampling plots for 4 cultivars Kibuzi, Nakitembe, Enyeru and Nakinyika growing in two agroecological zones of Uganda being the L.Victoria Crescent and the South-western region. Total carbon and Soil Organic Carbon (SOC) stocks did not differ considerably across cultivars (P>0.05). However, there was significant variation (P<0.05) in plant carbon stock being lowest in two cultivars: Nakinyika at 0.37±0.19 Mgha-1 and Nakitembe at 0.40±0.19Mgha-1; and highest in Enyeru at 1.64±0.18 Mgha-1. The SOC stock variation difference across depth was 2.9-8.5 Mgha-1 being higher in top soil than sub-soil. Despite the small plant carbon stock amounts, the system enables much more carbon to be stored in the soil considering the proportion of what is contained in the plant to that in the soil across all cultivars (0.4-2%). The study therefore recommends revision of existing carbon frameworks to incorporate the contribution of non-woody perennials like bananas in the carbon cycle so that the poor small scale farmers who cannot afford large acreages to establish tree plantations can also benefit from such initiatives.