Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Musaazi, Isaac G."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Assessing the impact of working pressure on water meter registration
    (Research and Technology-Aqua, 2021) Musaazi, Isaac G.; Sempewo, Jotham I.; Babu, Mohammed
    Fluctuations in the network pressure of water supply systems affect hydraulic performance and water meter accuracy. The development of metering error curves requires steady-state conditions which are extremely rare in water distribution systems characterized by intermittent supply. Simple deterministic models are suggested and developed from monthly data collected over a 4-year period (2010–2014) for three most dominant meter models (Models 1–3) in the Kampala Water Distribution System (KWDS), Uganda. This study combines pressure and billing information at the same time to understand metering accuracy. Results showed that metering accuracy increased by 4.2% for Model 1, 8.4% for Model 2 and 2.9% for Model 3, when the pressure was increased from 10 to 50 meters head. Age did not influence the impact of pressure on meter accuracy. The most sensitive parameter in the model was the meter age. Metering accuracy was relatively constant after a period of 5 years. The least sensitive parameter was the working pressure which caused a slight change to the annual billed volume. The ability of the model to accurately predict the meter registration degenerated with an increasing annual billed volume. Model 2 meters were the best performing and probably the most suitable meters in the KWDS.
  • Loading...
    Thumbnail Image
    Item
    Logistic Pipe Failure Prediction Models for an Urban Water Distribution Network in the Developing World: a case study of Kampala water, Uganda
    (Water Practice & Technology, 2022) Auma, Rose; Musaazi, Isaac G.; Tumutungire, Martin D.; Sempewo, Jotham Ivan
    Statistical models can be used as proactive approaches to pipe failure management for the satisfactory and efficient functionality of a water distribution network (WDN). The study aimed to develop two logistic regression models using historical data and evaluated them based on prediction accuracy, receiver operator characteristics (ROC), and area under the curve (AUC). Pipe sizes ranging from 150 mm to 350 mm in the WDN were adequate to prevent pipe failure. However, a 250 mm pipe diameter had the lowest failure probability. Old pipes had a lower failure probability than new pipes. Although it was evident that the installation design of water pipes is changing from steel to unplasticized polyvinyl chloride (uPVC), steel pipes had a lower failure probability than uPVC at the same depth from the soil surface. Pipes buried in gravel with a small diameter had a lower failure probability than those in clay of a bigger diameter. With a median pipe age of 8 years in the WDN and greater class weight on pipe failures, the binomial logistic regression model had better performance (accuracy – 96.9%, AUC – 0.996) than the multinomial logistic model (accuracy – 90.9%, AUC – 0.992), representing reliable model predictions. The models can be used to modify data collection protocols to better identify potential water pipes that require maintenance or replacement.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback