Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mukwaya, Louis G."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Contrasting Plasmodium infection rates and insecticide susceptibility profiles between the sympatric sibling species Anopheles parensis and Anopheles funestus s.s: a potential challenge for malaria vector control in Uganda
    (Parasites & vectors, 2014) Mulamba, Charles; Irving, Helen; Riveron, Jacob M.; Mukwaya, Louis G.; Birungi, Josephine; Wondji, Charles S.
    Although the An. funestus group conceals one of the major malaria vectors in Africa, little is known about the dynamics of members of this group across the continent. Here, we investigated the species composition, infection rate and susceptibility to insecticides of this species group in Uganda. Methods Indoor resting blood-fed Anopheles adult female mosquitoes were collected from 3 districts in Uganda. Mosquitoes morphologically belonging to the An. funestus group were identified to species by PCR. The sporozoite infection rates were determined by TaqMan and a nested PCR. Susceptibility to major insecticides was assessed using WHO bioassays. The potential role of four candidate resistance genes was assessed using qRT-PCR. Results An. funestus s.s. and An. parensis, were the only members of the An. funestus group identified. Both species were sympatric in Masindi (North-West), whereas only An. parensis was present in Mityana (Central) and Ntungamo (South-West). The Plasmodium falciparum infection detected in An. parensis (4.2%) by TaqMan could not be confirmed by nested PCR, whereas the 5.3% infection in An. funestus s.s. was confirmed. An. parensis was susceptible to most insecticides, however, a moderate resistance was observed against deltamethrin and DDT. In the sympatric population of Masindi, resistance was observed to pyrethroids (permethrin and deltamethrin) and DDT, but all the resistant mosquitoes belonged to An. funestus s.s. No significant over-expression was observed for the four P450 candidate genes CYP6M7, CYP9K1, CYP6P9 and CYP6AA4 between deltamethrin resistant and control An. parensis. However, when compared with the susceptible FANG An. funestus s.s strain, the CYP9K1 is significantly over-expressed in An. parensis (15-fold change; P < 0.001), suggesting it could play a role in the deltamethrin resistance. Conclusion The contrasting infection rates and insecticide susceptibility profiles of both species highlights the importance of accurate species identification for successful vector control programs.
  • Loading...
    Thumbnail Image
    Item
    Genetic structure of Anopheles gambiae populations on islands in northwestern Lake Victoria, Uganda
    (Uganda. Natural Review of Microbiology, 2005) Kayondo, Jonathan K.; Mukwaya, Louis G.; Stump, Aram; Michel, Andrew P.; Coulibaly, Mamadou B.; Besansky, Nora J.; Collins, Frank H.
    Alternative means of malaria control are urgently needed. Evaluating the effectiveness of measures that involve genetic manipulation of vector populations will be facilitated by identifying small, genetically isolated vector populations. The study was designed to use variation in microsatellite markers to look at genetic structure across four Lake Victoria islands and two surrounding mainland populations and for evidence of any restriction to free gene flow. Methods: Four Islands (from 20–50 km apart) and two surrounding mainland populations (96 km apart) were studied. Samples of indoor resting adult mosquitoes, collected over two consecutive years, were genotyped at microsatellite loci distributed broadly throughout the genome and analysed for genetic structure, effective migration (Nem) and effective population size (Ne). Results: Ne estimates showed island populations to consist of smaller demes compared to the mainland ones. Most populations were significantly differentiated geographically, and from one year to the other. Average geographic pair-wise FST ranged from 0.014–0.105 and several pairs of populations had Ne m < 3. The loci showed broad heterogeneity at capturing or estimating population differences. Conclusion: These island populations are significantly genetically differentiated. Differences reoccurred over the study period, between the two mainland populations and between each other. This appears to be the product of their separation by water, dynamics of small populations and local adaptation. With further characterisation these islands could become possible sites for applying measures evaluating effectiveness of control by genetic manipulation.
  • Loading...
    Thumbnail Image
    Item
    Life-history attributes of juvenile Anopheles gambiae s.s. in central Uganda; implications for malaria control interventions
    (Medical and veterinary entomology, 2022) Batume, Charles; Akol, Anne M.; Mukwaya, Louis G.; Birungi, Josephine; Kayondo, Jonathan K.
    Malaria is among the leading causes of death in Uganda, and Anopheles gambiae sensu stricto (s.s.) is the predominant vector. Although current vector control interventions have greatly reduced the malaria burden, the disease persists. New interventions are needed in order to eradicate them. Evaluation of new tools will require the availability of well‐characterized test vector populations. Juvenile An. gambiae s.s. from Kibbuye and Kayonjo‐derived populations were characterized under semi‐field and laboratory conditions, given that various vector traits, including abundance and fitness are dependent on development profiles at this life stage. Ten replicates comprising 30 first instar larvae each were profiled for various life‐history attributes (egg hatching, larval development time, larval survivorship, pupal weight and pupation rate). All parameters were similar for the two sites under laboratory conditions. However, the similarities or differences between field and laboratory development were parameter‐specific. Whereas, larval survivorship and pupal weight were similar across seasons and laboratory in colonies from both sites, in the semi‐field settings, pupation rate and larval survivorship differed between seasons in both sites. In addition, the average larval development time during the wet season was longer than that of the laboratory for both sites. Availability of mirror field sites is important for future tool evaluations.
  • Loading...
    Thumbnail Image
    Item
    Reduced‑representation sequencing identifies small effective population sizes of Anopheles gambiae in the north‑western Lake Victoria basin, Uganda
    (Uganda. Malaria journal, 2018) Wiltshire, Rachel M.; Bergey, Christina M.; Kayondo, Jonathan K.; Birungi, Josephine; Mukwaya, Louis G.; Emrich, Scott J.; Besansky, Nora J.; Collins, Frank H.
    Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. Methods 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). Results 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480–0.0846). Ne estimates were generally small (124.2–1920.3). Conclusions A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback