Browsing by Author "Matovu, E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Parasitological detection of Trypanosoma brucei gambiense in serologically negative sleeping-sickness suspects from north-western Uganda(Annals of Tropical Medicine & Parasitology, 2016) Enyaru, J. C. K.; Matovu, E.; Akol, M.; Sebikali, C.; Kyambadde, J.; Schmidt, C.; Brun, R.; Kaminsky, R.; Ogwal, L. M.; Kansiime, F.Forty-five parasitologically confirmed cases of sleeping sickness were diagnosed in north-western Uganda using a combination of two or three techniques. Forty of the cases were positive by the card agglutination test for trypanosomiasis (CATT), four were negative and one was not screened by the CATT. Trypanosomes isolated from the four CATT-negative but parasitologically positive cases were propagated for detailed biochemical genetic analysis. The aim was to demonstrate whether these four stocks lacked the LiTat 1.3 gene which encodes the antigen on which the CATT is based. All the DNA extracts isolated from these CATT-negative stocks and from six CATT-positive stocks of Trypanosoma brucei gambiense were targeted for amplification by the three variable-surface-glycoprotein genes thought to be ubiquitous in T. b. gambiense. The LiTat 1.3 gene was shown to be present in all 10 stocks. Trypanosome carriers may be CATT -negative because the CATT is not sensitive enough, because their parasites lack the LiT at 1.3 gene, or because their parasites have this gene but do not express it. The four sleeping-sickness cases who gave negative CATT results in the present study have very important implications in the diagnosis of T. b. gambiense infections using the CATT. Following treatment of the CATT -positive cases, the CA TT -negative carriers of the trypanosomes remain as human reservoir hosts for continuous infection of the population. Because CATT-negative individuals are rarely examined further, the general prevalence of parasitologically positive but CATT-negative cases is unclear. This study demonstrates the value of co-ordinated use of serological and parasitological techniques in the diagnosis of Gambian sleeping sickness.Item Using Translation Elongation Factor Gene to Specifically Detect and Diagnose Fusarium xylaroides, a Causative Agent of Coffee Wilt Disease in Ethiopia, East and Central Africa(J Plant Pathol Microbiol, 2018) Olal, S.; Olango, N.; Kiggundu, A.; Ochwo, S.; Adriko, J.; Nanteza, A.; Matovu, E.; Lubega, G.W.; Kagezi, G.; Hakiza, G.J.; Wagoire, W.W.; Opiyo, S.O.The present study presents the first report on the application of DNA-based polymerase chain reaction (PCR) for the specific detection and diagnosis of F usarium xylarioides (anamorph: G ibberrela xylarioides). Fusarium xylarioides is the causative agent of Coffee wilt disease (Tracheomycosis), and the disease is the most important economic constraint in Robusta coffee production in Uganda. The pathogen has two races, one pathogenic to Robusta coffee and the other to Arabica coffee, and not vice versa. Its laboratory diagnosis has been mainly based on microscopy, which is slow, has poor discriminative power, requires high expertise, only applicable on host plants with symptoms, and has since failed to detect the pathogen from the soil. Translation Elongation factor-1α (TEF-1α) gene from a F. xylarioides isolated from infected Robusta coffee plant was amplified by Fusarium genus specific primer then the PCR product sequenced. The sequence data was then used to design the specific primer. The primer-BLAST product was found to match only F. xylarioides sequences comprising 75% of the race pathogenic to Robusta and 25% to Arabica coffee. In vitro test by PCR showed the primer to be specific to only F. xylarioides amplifying a 284bp product and was able to differentiate F. xylarioides from all closely related species of Fusarium and other plant pathogens tested. More so it was able to amplify DNA from all the F. xylarioides isolates from different regions of Uganda, and amplified DNA concentrations as minute as 0.78 ng/µL.Item Using Translation Elongation Factor Gene to Specifically Detect and Diagnose Fusarium xylaroides, a Causative Agent of Coffee Wilt Disease in Ethiopia, East and Central Africa(J Plant Pathol Microbiol, 2018) Olal, S.; Olango, N.; Kiggundu, A.; Nanteza, A.; Matovu, E.; Wagoire, W.W.The present study presents the first report on the application of DNA-based polymerase chain reaction (PCR) for the specific detection and diagnosis of F usarium xylarioides (anamorph: G ibberrela xylarioides). Fusarium xylarioides is the causative agent of Coffee wilt disease (Tracheomycosis), and the disease is the most important economic constraint in Robusta coffee production in Uganda. The pathogen has two races, one pathogenic to Robusta coffee and the other to Arabica coffee, and not vice versa. Its laboratory diagnosis has been mainly based on microscopy, which is slow, has poor discriminative power, requires high expertise, only applicable on host plants with symptoms, and has since failed to detect the pathogen from the soil. Translation Elongation factor-1α (TEF-1α) gene from a F. xylarioides isolated from infected Robusta coffee plant was amplified by Fusarium genus specific primer then the PCR product sequenced. The sequence data was then used to design the specific primer. The primer-BLAST product was found to match only F. xylarioides sequences comprising 75% of the race pathogenic to Robusta and 25% to Arabica coffee. In vitro test by PCR showed the primer to be specific to only F. xylarioides amplifying a 284bp product and was able to differentiate F. xylarioides from all closely related species of Fusarium and other plant pathogens tested. More so it was able to amplify DNA from all the F. xylarioides isolates from different regions of Uganda, and amplified DNA concentrations as minute as 0.78 ng/µL.