Browsing by Author "Maruthi, M. N."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item African Cassava Whitefly, Bemisia tabaci, Resistance in African and South American Cassava Genotypes(Journal of integrative agriculture, 2012) Omongo, Christopher A.; Kawuki, Robert; Bellotti, Antony C.; Alicai, Titus; Baguma, Yona; Maruthi, M. N.; Bua, Anton; Colvin, JohnThe whitefly, Bemisia tabaci, is a major pest of cassava, particularly in Africa where it is responsible both for the transmission of plant viruses and, increasingly, for direct damage due to feeding by high populations. To date, there have been no practical solutions to combat this emerging problem, due to the inability of the subsistence farmers that grow cassava to afford expensive inputs such as insecticides. A programme of research was carried out linking institutes in Africa, the UK and South America, to identify possible resistance sources in cassava to the whitefly, Bemisia tabaci. The South American genotype MEcu 72 and several Ugandan cassava landraces including Ofumba Chai, Nabwire 1 and Mercury showed good levels of resistance to B. tabaci. Field and screen-house experiments showed that all of the improved, high-yielding cassava mosaic disease (CMD) resistant cassava genotypes assessed were highly susceptible to B. tabaci and supported high populations of all life stages. These data support the hypothesis that the continuing high populations of cassava B. tabaci in Uganda are due, in part, to the widespread adoption of CMD-resistant cassava varieties during the CMD pandemic. They also show that the whitefly, Aleurotrachelus socialis, resistance present in the South American cassava genotypes could have broader applicability in the Old World.Item RNAi-mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease(Molecular plant pathology, 2011) Patil, Basavaprabhu L.; Ogwok, Emmanuel; Wagaba, Henry; Mohammed, Ibrahim U.; Yadav, Jitender S.; Bagewadi, Basavaraj; Taylor, Nigel J.; Kreuze, Jan F.; Maruthi, M. N.; Alicai, Titus; Fauquet, Claude M.Cassava brown streak disease (CBSD) is emerging as one of the most important viral diseases of cassava (Manihot esculenta) and is considered today as the biggest threat to cassava cultivation in East Africa. The disease is caused by isolates of at least two phylogenetically distinct species of single-stranded RNA viruses belonging to the family Potyviridae, genus Ipomovirus. The two species are present predominantly in the coastal lowland [Cassava brown streak virus (CBSV); Tanzania and Mozambique] and highland [Cassava brown streak Uganda virus (CBSUV); Lake Victoria Basin, Uganda, Kenya and Malawi] in East Africa. In this study, we demonstrate that CBSD can be efficiently controlled using RNA interference (RNAi). Three RNAi constructs targeting the highland species were generated, consisting of the full-length (FL; 894 nucleotides), 397-nucleotide N-terminal and 491- nucleotide C-terminal portions of the coat protein (CP) gene of a Ugandan isolate of CBSUV (CBSUV-[UG:Nam:04]), and expressed constitutively in Nicotiana benthamiana. After challenge with CBSUV-[UG:Nam:04], plants homozygous for FL-CP showed the highest resistance, followed by the N-terminal and C-terminal lines with similar resistance. In the case of FL, approximately 85% of the transgenic plant lines produced were completely resistant. Some transgenic lines were also challenged with six distinct isolates representing both species: CBSV and CBSUV. In addition to nearly complete resistance to the homologous virus, two FL plant lines showed 100% resistance and two C-terminal lines expressed 50–100% resistance, whereas the N-terminal lines succumbed to the nonhomologous CBSV isolates. Northern blotting revealed a positive correlation between the level of transgene-specific small interfering RNAs detected in transgenic plants and the level of virus resistance.This is the first demonstration of RNAi-mediated resistance to CBSD and protection across very distant isolates (more than 25% in nucleotide sequence) belonging to two different species: Cassava brown streak virus and Cassava brown streak Uganda virus