Browsing by Author "Marrero-Ponce, Y."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Event-based criteria in GT-STAF information indices: theory, exploratory diversity analysis and QSPR applications(SAR and QSAR in Environmental Research, 2013) Barigye, S.J.; Marrero-Ponce, Y.; Martı´nez Santiago, O.; Galvez, J.Versatile event-based approaches for the definition of novel information theory-based indices (IFIs) are presented. An event in this context is the criterion followed in the “discovery” of molecular substructures, which in turn serve as basis for the construction of the generalized incidence and relations frequency matrices, Q and F, respectively. From the resultant F, Shannon's, mutual, conditional and joint entropy-based IFIs are computed. In previous reports, an event named connected subgraphs was presented. The present study is an extension of this notion, in which we introduce other events, namely: terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach's subgraphs, MACCs, E-state and substructure fingerprints and, finally, Ghose and Crippen atom-types for hydrophobicity and refractivity. Moreover, we define magnitude-based IFIs, introducing the use of the magnitude criterion in the definition of mutual, conditional and joint entropy-based IFIs. We also discuss the use of information-theoretic parameters as a measure of the dissimilarity of codified structural information of molecules. Finally, a comparison of the statistics for QSPR models obtained with the proposed IFIs and DRAGON's molecular descriptors for two physicochemical properties log P and log K of 34 derivatives of 2-furylethylenes demonstrates similar to better predictive ability than the latter.Item N-tuple Topological/geometric cutoffs for 3D N-linear Algebraic Molecular Codifications: variability, linear independence and QSAR analysis(SAR and QSAR in Environmental Research, 2016) García-Jacas, C. R.; Marrero-Ponce, Y.; Barigye, S. J.; Cabrera-Leyva, L.; Fernández-Castillo, A.Novel N-tuple topological/geometric cutoffs to consider specific inter-atomic relations in the QuBiLS-MIDAS framework are introduced in this manuscript. These molecular cutoffs permit the taking into account of relations between more than two atoms by using (dis-)similarity multi-metrics and the concepts related with topological and Euclidean-geometric distances. To this end, the kth two-, three- and four-tuple topological and geometric neighbourhood quotient (NQ) total (or local-fragment) spatial-(dis)similarity matrices are defined, to represent 3D information corresponding to the relations between two, three and four atoms of the molecular structures that satisfy certain cutoff criteria. First, an analysis of a diverse chemical space for the most common values of topological/Euclidean-geometric distances, bond/dihedral angles, triangle/quadrilateral perimeters, triangle area and volume was performed in order to determine the intervals to take into account in the cutoff procedures. A variability analysis based on Shannon’s entropy reveals that better distribution patterns are attained with the descriptors based on the cutoffs proposed (QuBiLS-MIDAS NQ-MDs) with regard to the results obtained when all inter-atomic relations are considered (QuBiLS-MIDAS KA-MDs – ‘Keep All’). A principal component analysis shows that the novel molecular cutoffs codify chemical information captured by the respective QuBiLS-MIDAS KA-MDs, as well as information not captured by the latter. Lastly, a QSAR study to obtain deeper knowledge of the contribution of the proposed methods was carried out, using four molecular datasets (steroids (STER), angiotensin converting enzyme (ACE), thermolysin inhibitors (THER) and thrombin inhibitors (THR)) widely used as benchmarks in the evaluation of several methodologies. One to four variable QSAR models based on multiple linear regression were developed for each compound dataset following the original division into training and test sets. The results obtained reveal that the novel cutoff procedures yield superior performances relative to those of the QuBiLS-MIDAS KA-MDs in the prediction of the biological activities considered. From the results achieved, it can be suggested that the proposed N-tuple topological/geometric cutoffs constitute a relevant criteria for generating MDs codifying particular atomic relations, ultimately useful in enhancing the modelling capacity of the QuBiLS-MIDAS 3D-MDs.Item QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents(SAR and QSAR in Environmental Research, 2015) Marrero, R. Medina; Marrero-Ponce, Y.; Barigye, S.J.; Acevedo-Barrios, R.The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.