Browsing by Author "Malherbe, J. B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of temperature and CH4/ZrCl4 molar ratio on ZrC layers deposited in a vertical-wall CVD system(Proceedings of SAIP, 2016) Biira, S.; Alawad, B. A. B; Bissett, H.; Nel, J. T.; Hlatshwayo, T. T.; Crouse, P.L.; Malherbe, J. B.The synthesis of ZrC layers was performed in an in-house developed, vertical-wall chemical vapour deposition (CVD) system operating at atmospheric pressure. Zirconium tetrachloride and methane were used as zirconium and carbon sources respectively, with an excess of hydrogen as reducing agent. Argon was used to carry the vaporised ZrCl4 at 300 °C to the reaction chamber. The deposition of ZrC was carried out on graphite substrates at temperatures in the range of 1200 °C –1600 °C. The molar ratio of CH4/ZrCl4 was varied from 6.04 to 24.44. Response surface methodology was applied to optimise the process parameters for the deposition of ZrC. A central composite design was used to investigate the effects of temperature and molar ratio of CH4/ZrCl4 on the average crystallite size. Quadratic statistical models for crystallite size was established. Scanning electron microscopy (SEM) images show that the coatings became more uniform with increased particle agglomeration as temperature increased.Item Optimisation of the synthesis of ZrC coatings in a radio frequency induction-heating chemical vapour deposition system using response surface methodology(Thin Solid Films, 2017) Biira, S.; Crouse, P. L.; Bissett, H.; Alawada, B. A. B; Hlatshwayo, T. T.; Nel, J. T.; Malherbe, J. B.A chemical vapour deposition process using radio frequency induction heating operating at atmospheric pressure was developed for the deposition of ZrC coatings. The precursors utilised in this process were zirconium tetrachloride and methane as zirconium and carbon sources respectively, in an excess of hydrogen. Additionally, a stream of argon was used to, first, remove oxygen from the reactor and then to sweep the vapourised ZrCl4 at 300 °C to the reaction chamber. The ZrC coatings were deposited on graphite substrates at substrate temperatures in the range of 1200 °C–1600 °C. The molar ratio of CH4/ZrCl4 was varied from 6.04 to 24.44. Before the start of the deposition process, thermodynamic feasibility analysis for the growth of ZrC at atmospheric pressure was also carried out. Response surface methodology was applied to optimise the process parameters for the deposition of ZrC coatings. A central composite design was used to investigate the effects of temperature and molar ratio of CH4/ZrCl4 on the growth rate, atomic ratio of C/Zr and crystallite size of ZrC coatings. Quadratic statistical models for growth rate and crystallite size were established. The atomic ratio of C/Zr followed a linear trend. It was found that an increase in substrate temperature and CH4/ZrCl4 ratio resulted in increased growth rate of ZrC coatings. The carbon content (and concomitantly the atomic ratio of C/Zr) in the deposited coatings increased with temperature and molar ratio of CH4/ZrCl4. The substrate temperature of 1353.3 °C and the CH4/ZrCl4 molar ratio of 10.41were determined as the optimal condition for growing near-stoichiometry ZrC coatings. The values were 1.03, 6.05 μm/h and 29.8 nm for C/Zr atomic percentage ratio, growth rate and average crystallite size respectively