Browsing by Author "Makundi, Rhodes H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Population and Breeding Patterns of the Pest Rodent: Mastomys Natalensis in a Maize Dominated Agroecosystem in Lake Victoria Crescent Zone, Eastern Uganda(African Zoology, 2021) Mayamba, Alex; Byamungu, Robert Modest; Isabirye, Moses; Makundi, Rhodes H.; Kimaro, Didas N .; Massawe, Apia W.; Kifumba, David; Nakiyemba, Alice; Mdangi, Mshaka E.; Isabirye, Brian E.; Mulungu, Loth S.Multimammate mice (Mastomys natalensis) are a key rodent pest species to cereal crop production in Sub-Saharan Africa. This study aimed at generating information on the population fluctuation and breeding patterns of M. natalensis in a maize dominated agro-ecosystem in the Mayuge district, Eastern Uganda. The area is characterised by a bimodal rainfall pattern with rains in the periods March to May and August to November. A Capture–Mark–Recapture study was established in cultivated and fallow field habitats with, in each habitat, two plots of 60 m by 60 m with 49 evenly spaced trapping points. Trapping was conducted monthly for three consecutive nights, and the study extended from January 2016 to June 2018. A Generalised Linear Mixed Model analysis showed significantly higher population density estimates (β = 0.69, p<0.0001) in fallow land compared to cultivated fields, and also significantly higher density estimates( β = 0.75, p = 0.006) in the first wet season and lowest in the first dry season. The percentage breeding females differed significantly across months (χ 2 = 27.05, df = 11, p = 0.003) and seasons (χ 2 = 17.64, p = 0.0003). Breeding females occurred throughout all the months of trapping, but with significantly higher percentages in the months of March to July (i.e. first wet season extending to second dry season) and generally lowest in the first dry months (i.e. January and February in 2017, and February 2018). The results of this study have important consequences for the timing of control efforts, and recommends that control should be initiated during the dry seasons prior to wet seasons to counteract potential damaging population build up in later wet seasons when crop planting is expected.Item Species Composition and Community Structure of Small Pest Rodents (Muridae) in Cultivated and Fallow Fields in Maize‐ Growing Areas in Mayuge District, Eastern Uganda(Ecology and evolution,, 2019) Mayamba, Alex; Byamungu, Robert M.; Makundi, Rhodes H.; Kimaro, Didas N.; Isabirye, Moses; Massawe, Apia W.; Kifumba, David; Nakiyemba, Alice; Isabirye, Brian E.; Mulungu, Loth S.Pest rodents remain key biotic constraints to cereal crops production in the East African region where they occur, especially in seasons of outbreaks. Despite that, Uganda has scant information on rodents as crop pests to guide effective management strategies. A capture–mark–recapture (CMR) technique was employed to study the ecology of small rodents, specifically to establish the species composition and community structure in a maize-based agro ecosystem. Trapping of small rodents was conducted in permanent fallow land and cultivated fields, with each category replicated twice making four study grids. At each field, a 60 × 60 m grid was measured and marked with permanent trapping points spaced at 10 × 10 m, making a total of 49 trapping points/grids. Trapping was conducted monthly at 4-week interval for three consecutive days for two and half years using Sherman live traps. Eleven identified small rodent species and one insectivorous small mammal were recorded with Mastomys natalensis being the most dominant species (over 60.7%). Other species were Mus triton (16.1%), Aethomys hendei (6.7%), Lemniscomys zebra (5.2%), Lophuromys sikapusi (4.8%), Arvicanthis niloticus (0.9%), Gerbilliscus kempi (0.1%), Graphiurus murinus (0.1%), Steatomys parvus (0.1%), Dasymys incomtus (0.1%), and Grammomys dolichurus (0.1%). Spatially, species richness differed significantly (p = 0.0001) between the studied field habitats with significantly higher richness in fallow land compared with cultivated fields. Temporally, total species richness and abundance showed a significant interaction effect over the months, years, and fields of trapping with significantly (p = 0.001) higher abundances during months of wet seasons and in the first and third year of trapping. In terms of community structure, higher species diversity associated more with fallow field habitats but also with certain rare species found only in cultivated fields. Synthesis and applications. Based on these findings, management strategies can be designed to target the key pest species and the most vulnerable habitats thus reducing the impact they can inflict on field crops.