Browsing by Author "Low, Jan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Continuous Storage Root Formation and Bulking in Sweet potato(Gates Open Research, 2019) Bararyenya, Astere; Tukamuhabwa, Phinehas; Gibson, Paul; Grüneberg, Wolfgang; Ssali, Reuben; Low, Jan; Odong, Thomas; Ochwo-Ssemakula, Mildred; Talwana, Herbert; Mwila, Natasha; Mwanga, RobertSweetpotato (Ipomoea batatas (L.) Lam, family Convolvulaceae.) is one of the most important food crops worldwide, with approximately 106 million tons produced in almost 120 countries from an area of about 8 million ha and an average global yield of 11.1 tons/ha (FAO, 2016). Asia is the world’s largest sweetpotato producing continent, with 79 million tons, followed by Africa (FAOstat, 2016). About 75% of this global production is from China alone. A total of 21.3 million tons is produced in Africa, with 48% from the Great Lakes region. In East Africa, the crop is the second most important root crop after cassava and has played an important role as a famine-relief crop during its long history and has recently been reevaluated as a health-promoting food (Low et al., 2017). Uganda ranks as the fourth largest sweetpotato producer in the world after China, Nigeria and Tanzania, with a production of 2.1 million t. In Africa, Uganda is ranked third after Nigeria and Tanzania. Sweetpotato is one of the main staple crops in the food systems of Uganda, Rwanda, and Burundi with a per capita consumption of 50.9, 80.1 and 57.0 kg, respectivelyItem Genome-wide association study identified candidate genes controlling continuous storage root formation and bulking in hexaploid sweetpotato(BMC plant biology, 2020) Bararyenya, Astère; Olukolu, Bode A.; Tukamuhabwa, Phinehas; Grüneberg, Wolfgang J.; Ekaya, Wellington; Low, Jan; Ochwo-Ssemakula, Mildred; Odong, Thomas L.; Talwana, Herbert; Badji, Arfang; Kyalo, Martina; Nasser, Yao; Gemenet, Dorcus; Kitavi, Mercy; Mwanga, Robert O. M.Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. Results: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (pvalue < 5 × 10− 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. Conclusion: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.