Browsing by Author "Kisiki Nsamba, Hussein"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Designing and Performance Evaluation of Biochar Production in a Top-Lit Updraft Upscaled Gasifier(Journal of Sustainable Bioenergy Systems, 2015) Kisiki Nsamba, Hussein; Hale, Sarah E.; Cornelissen, Gerard; Bachmann, Robert ThomasThe Original Belonio Rice Husk Gasifier (OBRHG), initially of height of 0.6 m, diameter of 0.15 m and thickness of 0.025 m was tested for biochar production through air gasification of rice husk (RH) and the design was upscaled to height of 1.65 m, diameter of 0.85 m and thickness of 0.16 m. A total of 27 experiments were conducted to monitor the gasifier performance and the system can operate with the centrifugal blower operating at a power input of 155 W and a maximum flow rate of 1450 m3/hr regulated according to the air requirement. Building the UBRHG is simple and inexpensive to fabricate and with the fairly satisfactory performance and ease of construction along with the convenience of operation, the UBRHG with RH as feed would find abundant avenues of applications in a rural setting for biochar production alongside thermal, mechanical and electrical energy delivery.Item Evaluation of the Cooking Cultures and Practices in Rural Uganda(Journal of Sustainable Bioenergy Systems, 2021) Kisiki Nsamba, Hussein; Ssali, Robert; Ssali, Sarah N.; Matovu, Fahad; Wasswa, John; Kivumbi Balimunsi, HusseinMany communities across the globe still practice poor cooking cultures as part of their well-being to prepare food and other heating activities. Such bad cooking practices are not environmentally friendly, are wasteful and have adverse health effects. This work presents the results of the survey that was conducted to establish the existing cooking practices commonly used in Uganda, identify the commonly used fuel during cooking, identify perceptions on improved cooking stoves (ICS), perceived preferences during cooking as well as identify whether users are aware of the health challenges due to poor cooking and describe community opinions of ICS for rural communities in Uganda. The interviews were conducted on household levels across all the regions covering Uganda’s major rural regions. It was observed that the largest population of rural Ugandans still use the 3 stone stove fire for cooking with a percentage of 53.5%, Charcoal stove, 27.3%, Improved cooking stove, 16.9%, Electric cookers,1.2%, LPG 0.7% and biogas 0.5% for the preparation of their various types of cooked foods while forest firewood is the commonly used biomass fuel for cooking with a percentage of 66.8% compared to Charcoal, Briquettes, Saw dust and others with a percentage of 27.1%, 0.7%, 0.7%, 1.1% respectively. This reveals the great majority of users whose life is at risk as 3 stone stoves are characterized by low efficiency and high smoke production which increases the health risks of the users as well as increase the risk of deforestation rates. Household cooks showed great willingness to pay for a novel stove type in all the 4 regions but from the survey data, it was indicated that the preferences varied from one region to another with a great majority preferring minimal smoke production with increased heat retention capacity.Item Sustainable Technologies for Small-Scale Biochar Production—A Review(Journal of Sustainable Bioenergy Systems, 2015) Kisiki Nsamba, Hussein; Hale, Sarah E.; Cornelissen, Gerard; Bachmann, Robert ThomasCharcoal has found enormous application in both agriculture (AKA biochar) and other sectors. Despite its potential benefits, small scale technologies relevant for its production remain a chal- lenge. Technologies striking a balance between user friendliness, energy efficiency, ease of adap- tation and limited emissions could easily be integrated into the local community for the sustaina- ble production of biochar answering both technical and socio-economic aspects. These technolo- gies can be customized to recover the produced heat alongside biochar and the producer gas. The purpose of this work is to review the state of the art in small scale technologies, their associated risks and challenges as well as research gaps for future work. Factors affecting biochar production have been discussed and temperature is known to heavily influence the biomass to biochar con- version process. Based on the reviewed work, there is a need to develop and promote sustainable and efficient technologies that can be integrated into biochar production systems. There is also further need to develop portable, economically viable technologies that could be integrated into the biochar production process without compromising the quality of produced biochar. Such tech- nologies at midscale level can be channeled into conventional small scale farmer use in order that the farmers can process their own biochar.Item Sustainable Technologies for Small-Scale Biochar Production—A Review(Journal of Sustainable Bioenergy Systems, 2015) Kisiki Nsamba, Hussein; Hale, Sarah E.; Cornelissen, Gerard; Bachmann, Robert ThomasCharcoal has found enormous application in both agriculture (AKA biochar) and other sectors. Despite its potential benefits, small scale technologies relevant for its production remain a challenge. Technologies striking a balance between user friendliness, energy efficiency, ease of adaptation and limited emissions could easily be integrated into the local community for the sustainable production of biochar answering both technical and socio-economic aspects. These technologies can be customized to recover the produced heat alongside biochar and the producer gas. The purpose of this work is to review the state of the art in small scale technologies, their associated risks and challenges as well as research gaps for future work. Factors affecting biochar production have been discussed and temperature is known to heavily influence the biomass to biochar conversion process. Based on the reviewed work, there is a need to develop and promote sustainable and efficient technologies that can be integrated into biochar production systems. There is also further need to develop portable, economically viable technologies that could be integrated into the biochar production process without compromising the quality of produced biochar. Such technologies at midscale level can be channeled into conventional small scale farmer use in order that the farmers can process their own biochar.