Browsing by Author "Kagina, Benjamin M.N."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Delaying BCG Vaccination from Birth to 10 Weeks of Age May Result in an enhanced Memory CD4 T Cell Response(Vaccine, 2009) Kagina, Benjamin M.N.; Bowmaker, Mark; Erasmus, Mzwandile; Walzl, GerhardIn most tuberculosis (TB) endemic countries, bacillus Calmette–Guérin (BCG) is usually given around birth to prevent severe TB in infants. The neonatal immune system is immature. Our hypothesis was that delaying BCG vaccination from birth to 10 weeks of age would enhance the vaccine-induced immune response. In a randomized clinical trial, BCG was administered intradermally either at birth (n=25) or at 10 weeks of age (n=21). Ten weeks after vaccination, and at 1 year of age, vaccine-specific CD4 and CD8 T cell responses were measured with a whole blood intracellular cytokine assay. Infants who received delayed BCG vaccination demonstrated higher frequencies of BCG-specific CD4 T cells, particularly polyfunctional T cells co-expressing IFN-γ, TNF-α and IL-2, and most strikingly at 1 year of age. Delaying BCG vaccination from birth to 10 weeks of age enhances the quantitative and qualitative BCG-specific T cell response, when measured at 1 year of age.Item First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults(Vaccine, 2015) Luabeya, Angelique Kany Kany; Kagina, Benjamin M.N.; Kromann, Ingrid; Mahomed, Hassan; Hanekom, Willem A.H56:IC31 is a candidate tuberculosis vaccine comprising a fusion protein of Ag85B, ESAT-6 and Rv2660c, formulated in IC31 adjuvant. This first-in-human, open label phase I trial assessed the safety and immunogenicity of H56:IC31 in healthy adults without or with Mycobacterium tuberculosis (M.tb) infection. Low dose (15μg H56 protein in 500nmol IC31) or high dose (50μg H56, 500nmol IC31) vaccine was administered intramuscularly thrice, at 56-day intervals. Antigen-specific T cell responses were measured by intracellular cytokine staining and antibody responses by ELISA. One hundred and twenty-six subjects were screened and 25 enrolled and vaccinated. No serious adverse events were reported. Nine subjects (36%) presented with transient cardiovascular adverse events. The H56:IC31 vaccine induced antigen-specific IgG responses and Th1 cytokine-expressing CD4+ T cells. M.tb-infected vaccinees had higher frequencies of H56-induced CD4+ T cells than uninfected vaccinees. Low dose vaccination induced more polyfunctional (IFN-γ+TNF-α+IL-2+) and higher frequencies of H56-specific CD4+ T cells compared with high dose vaccination. A striking increase in IFN-γ-only-expressing CD4+ T cells, displaying a CD45RA−CCR7− effector memory phenotype, emerged after the second high-dose vaccination in M.tb-infected vaccinees. TNF-α+IL-2+ H56-specific memory CD4+ T cells were detected mostly after low-dose H56 vaccination in M.tb-infected vaccinees, and predominantly expressed a CD45RA−CCR7+ central memory phenotype. Our results support further clinical testing of H56:IC31.Item Higher human CD4 T cell response to novel Mycobacterium Tuberculosis Latency associated Antigens Rv2660 and Rv2659 in Latent Infection compared with Tuberculosis Disease(Vaccine, 2010) Govender, Lerisa; Scriba, Thomas J.; Kagina, Benjamin M.N.; Rosenkrands, Ida; Mahomed, HassanOne third of the world's population is infected with Mycobacterium tuberculosis (M.tb). A vaccine that would prevent progression to TB disease will have a dramatic impact on the global TB burden. We propose that antigens of M.tb that are preferentially expressed during latent infection will be excellent candidates for post-exposure vaccination. We therefore assessed human T cell recognition of two such antigens, Rv2660 and Rv2659. Expression of these was shown to be associated with non-replicating persistence in vitro. After six days incubation of PBMC from persons with latent tuberculosis infection (LTBI) and tuberculosis (TB) disease, Rv2660 and Rv2659 induced IFN-γ production in a greater proportion of persons with LTBI, compared with TB diseased patients. Persons with LTBI also had increased numbers of viable T cells, and greater specific CD4+ T cell proliferation and cytokine expression capacity. Persons with LTBI preferentially recognize Rv2659 and Rv2660, compared with patients with TB disease. These results suggest promise of these antigens for incorporation into post-exposure TB vaccines.Item The novel tuberculosis vaccine, AERAS-402, is safe in healthy infants previously vaccinated with BCG, and induces dose-dependent CD4 and CD8T cell response(Vaccine, 2014) Kagina, Benjamin M.N.; Tameris, Michele D.; Hussey, Gregory D.; Benko, JacquelineEfforts to reduce risk of tuberculosis disease in children include development of effective vaccines. Our aim was to test safety and immunogenicity of the new adenovirus 35-vectored tuberculosis vaccine candidate AERAS-402 in infants, administered as a boost following a prime with the Bacille Calmette-Guerin vaccine. In a phase 1 randomised, double-blind, placebo-controlled, dose-escalation trial, BCG-vaccinated infants aged 6–9 months were sequentially assigned to four study groups, then randomized to receive an increasing dose-strength of AERAS-402, or placebo. The highest dose group received a second dose of vaccine or placebo 56 days after the first. The primary study outcome was safety. Whole blood intracellular cytokine staining assessed immunogenicity. Forty-two infants received AERAS-402 and 15 infants received placebo. During follow-up of 182 days, an acceptable safety profile was shown with no serious adverse events or discontinuations related to the vaccine. AERAS-402 induced a specific T cell response. A single dose of AERAS-402 induced CD4T cells predominantly expressing single IFN-γ whereas two doses induced CD4T cells predominantly expressing IFN-γ, TNF-α and IL-2 together. CD8T cells were induced and were more likely to be present after 2 doses of AERAS-402. AERAS-402 was safe and immunogenic in healthy infants previously vaccinated with BCG at birth. Administration of the highest dose twice may be the most optimal vaccination strategy, based on the induced immunity. Multiple differences in T cell responses when infants are compared with adults vaccinated with AERAS-402, in the same setting and using the same whole blood intracellular cytokine assay, suggest specific strategies may be important for vaccination for each population.