Browsing by Author "Kabaalu, Richard"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item African ancestry of New World, Bemisia tabaci-whitefly species(Scientific reports, 2018) Mugerwa, Habibu; Seal, Susan; Wang, Hua-Ling; Patel, Mitulkumar V.; Kabaalu, Richard; Omongo, Christopher A.; Alicai, Titus; Tairo, Fred; Ndunguru, Joseph; Sseruwagi, Peter; Colvin, JohnBemisia tabaci whitefly species are some of the world’s most devastating agricultural pests and plant-virus disease vectors. Elucidation of the phylogenetic relationships in the group is the basis for understanding their evolution, biogeography, gene-functions and development of novel control technologies. We report here the discovery of five new Sub-Saharan Africa (SSA) B. tabaci putative species, using the partial mitochondrial cytochrome oxidase 1 gene: SSA9, SSA10, SSA11, SSA12 and SSA13. Two of them, SSA10 and SSA11 clustered with the New World species and shared 84.8‒86.5% sequence identities. SSA10 and SSA11 provide new evidence for a close evolutionary link between the Old and New World species. Re-analysis of the evolutionary history of B. tabaci species group indicates that the new African species (SSA10 and SSA11) diverged from the New World clade c. 25 million years ago. The new putative species enable us to: (i) re-evaluate current models of B. tabaci evolution, (ii) recognise increased diversity within this cryptic species group and (iii) re-estimate divergence dates in evolutionary time.Item Genetic diversity of whitefly (Bemisia spp.) on crop and uncultivated plants in Uganda: implications for the control of this devastating pest species complex in Africa(Journal of pest science, 2021) Mugerwa, Habibu; Colvin, John; Alicai, Titus; Omongo, Christopher A.; Kabaalu, Richard; Visendi, Paul; Sseruwagi, Peter; Seal, Susan E.Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3′ barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts.