Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jesper, Oppelstrup"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bathymetry Development and Flow Analyses Using Two-Dimensional Numerical Modeling Approach for Lake Victoria
    (Fluids, 2019) Seema, Paul; Jesper, Oppelstrup; Thunvik, Roger; Mango Magero, John; Ddumba Walakira, David; Cvetkovic, Vladimir
    This study explored two-dimensional (2D) numerical hydrodynamic model simulations of Lake Victoria. Several methods were developed in Matlab to build the lake topography. Old depth soundings taken in smaller parts of the lake were combined with more recent extensive data to produce a smooth topographical model. The lake free surface numerical model in the COMSOL Multiphysics (CM) software was implemented using bathymetry and vertically integrated 2D shallow water equations. Validated by measurements of mean lake water level, the model predicted very low mean flow speeds and was thus close to being linear and time invariant, allowing long-time simulations with low-pass filtered inflow data. An outflow boundary condition allowed an accurate simulation to achieve the lake’s steady state level. The numerical accuracy of the linear measurement of lake water level was excellent.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback