Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Iga, Julius"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    High insecticide resistances levels in Anopheles gambiaes s.l. in northern Uganda and its relevance for future malaria control
    (BMC research notes, 2020) Echodu, Richard; Iga, Julius; Oyet, William Samuel; Mireji, Paul; Anena, Juliet; Onanyang, David; Iwiru, Tereza; Lutwama, Julius Julian; Auma Opiyo, Elizabeth
    The aim of the study was to determine the level of insecticide resistance and diversity in Anopheles mosquitoes in northern Uganda. Standard WHO insecticide susceptibility test assays were used to test for susceptibility to 0.5% malathion, 0.1% bendiocarb, 0.05% deltamethrin and 0.75% permethrin on 3–5 day old generation one progeny. We also screened for species diversity and knockdown resistance using PCR assay. Results: Anopheles gambiae s.s. is the predominant malaria vector in northern Uganda followed by An. arabiensis. An. gambiae s.s. was susceptible to malathion and bendiocarb with the observed mortality rate of 100% and 98–100% observed respectively while very high resistance was observed with deltamethrin and permethrin. Minimal KDReastern variant homozygous forms of 8.3% in An. gambiae s.s. were detected in Oyam district. In conclusion, this study confirms that An. gambiae s.s. females are susceptible to malathion and bendiocarb while high intensity of resistance was observed with deltamethrin and permethrin in the same area. Use of carbamate and organophosphate insecticides bendiocarb and malathion for indoor residual spraying activities in northern Uganda is highly recommended since high levels of pyrethroids resistance (deltamethrin and permethrin) was detected in the area.
  • Loading...
    Thumbnail Image
    Item
    High level of resistance in Anopheles arabiensis mosquito to pyrethroid insecticides from low malaria transmission zone of Moroto district, Karamoja region, Uganda: Implication for malaria vector control
    (Research Square, 2020) Echodu, Richard; Anena, Juliet; Iwiru, Tereza; Mireji, Paul; Malinga, Geoffrey Maxwell; Opiyo, Elizabeth A.; Iga, Julius; David, Onanyang
    Karamoja region of Uganda previously classified as low malaria transmission zone is currently experiencing significant upsurge of malaria incidences. Long lasting insecticidal nets (LLINs) impregnated with pyrethroids constitute a major tool for malaria control in this region. Efficacy of this tool can be hampered by resistance to the pyrethroids in the Anopheles mosquito vectors. Resistance status of these mosquitoes in this region is poorly understood, effectively hampering better understanding of the impact of LLINs in the malaria control initiative. Here, we assessed susceptibility of the Anopheles arabiensis from the region to deltamethrin, permethrin (pyrethroids) and pirirmiphos-methyl (organophosphate) insecticides. Method: We collected anopheline mosquito larvae from their natural habitats and reared them to adult emergence in situ field insectary in Karamoja region. We then identified them morphological to species level and exposed 513 emerge adult female An gambiae s.l., mosquitoes to diagnostic dosages of deltamethrin (0.05%), permethrin (0.75%) and pirimiphos-methyl (0.25%) pyrethroids exposure using the standard WHO insecticide susceptibility test assay. Synergic assays using piperonyl butoxide (PBO) were done to check for the involvement of detoxification enzymes in pyrethroid resistant populations. We then screened for knockdown resistance (KDR) and mosquito species diversity using Polymerase Chain Reaction (PCR). Results: Majority (96%) of the mosquitoes we sampled were identified as An. arabiensis and 4% as An. gambiae sensu stricto. We observed cross-resistance to both deltamethrin (11.9%) and permethrin (47%) but susceptibility (100% mortality) to pirimiphos-methyl in An. arabiensis. The pre-exposure to PBO ameliorated the resistance to both pyrethroids. We detected homozygous KDR -eastern variant in 1.8 and 50% of the An. arabiensis and An. gambiae s.s. respectively. Conclusion: Anopheles arabiensis and An. gambiae s.s. are the malaria vector in Karamoja region with An. arabiensis predominating. Both species are susceptible to pirimiphos-methyl but resistant to both deltamethrin and permethrin, through a metabolic process (phenotype). Mosquotoes with genetic (kdr) mutations for resistance were minimal and hence have minimal contribution to the pyrethroid resistance profile. An. arabiensis can thus be controled in Karamoja region using deltamethrin and/or permethrin impregnated mosquito nets integrated with PBO and/or through indoor residual spraying of sprayable human dwellings with pirimiphos-methyl.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback