Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Han, Dong Seog"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Combined PDR and Wi-Fi Trilateration Algorithm for Indoor Localization
    (IEEE, 2019) Alwin, Poulose; Odongo, Steven Eyobu; Han, Dong Seog
    Indoor localization using Wi-Fi or pedes- trian dead reckoning (PDR) has several limitations in terms of Wi-Fi signal fluctuations and PDR drift errors. To overcome these limitations, we propose a sensor fusion framework for Wi-Fi and PDR systems. The pro- posed sensor fusion will overcome the PDR drift errors by analysing the Wi-Fi signal strength and the PDR results will compensate the Wi-Fi signal fluctuations. Based on the experiments conducted, results show that the proposed fusion indoor positioning algorithm shows high position accuracy over Wi-Fi localization and PDR systems when used independently. Our proposed combined position estimation algorithm achieves an improved average localization accuracy of 1.6 m when compared to the Wi-Fi and PDR systems when used independently.
  • Loading...
    Thumbnail Image
    Item
    A Multi-Model Fusion-Based Indoor Positioning System Using Smartphone Inertial Measurement Unit Sensor Data
    (IEEE, 2020) Adong, Priscilla; Eyobu, Odongo Steven; Oyana, Tonny J.; Han, Dong Seog
    We propose novel multi-model fusion-based step detection and step length estimation approaches that use the Kalman filter. The proposed step detection approach combines results from three conventional step detection algorithms, namely, findpeaks, localmax, and advanced zero crossing to obtain a single and more accurate step count estimate. The proposed step length estimation approach combines results from two popular step length estimation algorithms namely Weinberg’s and Kim’s methods. In our experiment, we consider five different smartphone placements, that is, when the smartphone is handheld, handheld with an arm swing, placed in the backpack, placed in a trousers’ back pocket and placed in a handbag. The system relies on inertia measurement unit sensors embedded in smartphones to generate accelerometer, gyroscope and magnetometer values from the human subject’s motion. Results from our experiments show that our proposed fusion based step detection and step length estimation approaches outperform the convectional step detection and step length estimation algorithms, respectively. Our Kalman fusion approach achieves a better step detection, step length estimation for all the five smart phone placements hence providing a better positioning accuracy. The performance of the proposed multimodel fusion-based positioning system was measured using the root mean square error (RMSE) of the displacement errors and step count errors exhibited by all the the step length and step count algorithms. The results show that the proposed Kalman fusion approach for step count estimation and step length estimation provides the least RMSE for all the smartphone placements. The proposed approach provides an average RMSE of 0.26 m in terms of the final position estimate for all the smartphone placements.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback