Browsing by Author "Castillo-Garit, Juan A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item In silico Antibacterial Activity Modeling Based on the TOMOCOMD-CARDD Approach(Journal of the Brazilian Chemical Society, 2015) Castillo-Garit, Juan A.; Marrero-Ponce, Yovani; Barigye, Stephen J.; Medina-Marrero, RicardoIn the recent times, the race to cope with the increasing multidrug resistance of pathogenic bacteria has lost much of its momentum and health professionals are grasping for solutions to deal with the unprecedented resistance levels. As a result, there is an urgent need for a concerted effort towards the development of new antimicrobial drugs to stay ahead in the fight against the ever adapting bacteria. In the present report, antibacterial classification functions (models) based on the topological molecular computational design-computer aided ‘‘rational’’ drug design (TOMOCOMD-CARDD) atom-based non-stochastic and stochastic bilinear indices are presented. These models were built using the linear discriminant analysis (LDA) method over a balanced chemical compounds dataset of 2230 molecular structures, with a diverse range of structural and molecular mechanism modes. The results of this study indicated that the non-stochastic and stochastic bilinear indices provided excellent classification of the chemical compounds (with accuracies of 86.31% and 84.92%, respectively, in the training set). These models were further externally validated yielding correct classification percentages of 86.55% and 87.91% for the non-stochastic and stochastic bilinear models, respectively. Additionally, the obtained models were compared with those reported in the literature and demonstrated comparable results, although the latter were built over much smaller datasets and with much higher degrees of freedom. Finally, simulated ligand-based virtual screening of 116 compounds, recently identified as potential antibacterials, was performed yielding 86.21% and 83.62% of correct classification, respectively, and thus demonstrating the utility of the obtained TOMOCOMD-CARDD models in the search of novel compounds with desirable antibacterial activity.Item Prediction of Aquatic Toxicity of Benzene Derivatives using Molecular Descriptor from Atomic Weighted Vectors.(Environmental toxicology and pharmacology, 2017) Martínez-López, Yoan; Barigye, Stephen J.; Martínez-Santiago, Oscar; Castillo-Garit, Juan A.Several descriptors from atom weighted vectors are used in the prediction of aquatic toxicity of set of organic compounds of 392 benzene derivatives to the protozoo ciliate Tetrahymena pyriformis (log(IGC50)−1). These descriptors are calculated using the MD-LOVIs software and various Aggregation Operators are examined with the aim comparing their performances in predicting aquatic toxicity. Variability analysis is used to quantify the information content of these molecular descriptors by means of an information theory-based algorithm. Multiple Linear Regression with Genetic Algorithms is used to obtain models of the structure–toxicity relationships; the best model shows values of Q2=0.830 and R2=0.837 using six variables. Our models compare favorably with other previously published models that use the same data set. The obtained results suggest that these descriptors provide an effective alternative for determining aquatic toxicity of benzene derivatives. :Item Undersampling: Case Studies of Faviviral Inhibitory Activities(Journal of Computer-Aided Molecular Design, 2019) Barigye, Stephen J.; Vega, José Manuel García de la; Castillo-Garit, Juan A.Imbalanced datasets, comprising of more inactive compounds relative to the active ones, are a common challenge in ligand-based model building workflows for drug discovery. This is particularly true for neglected tropical diseases since efforts to identify therapeutics for these diseases are often limited. In this report, we analyze the performance of several undersampling strategies in modeling the Dengue Virus 2 (DENV2) inhibitory activity, as well as the anti-flaviviral activities for the West Nile (WNV) and Zika (ZIKV) viruses. To this end, we build datasets comprising of 1218 (159 actives and 1059 inactives), 1044 (132 actives and 912 inactives) and 302 (75 actives and 227 inactives) molecules with known DENV2, WNV and ZIKV inhibitory activity profiles, respectively. We develop ensemble classifiers for these endpoints and compare the performance of the different undersampling algorithms on external sets. It is observed that data pruning algorithms yield superior performance relative to data selection algorithms. The best overall performance is provided by the one-sided selection algorithm with test set balanced accuracy (BACC) values of 0.84, 0.74 and 0.77 for the DENV2, WNV and ZIKV inhibitory activities, respectively. For the model building, we use the recently proposed GT-STAF information indices, and compare the predictivity of 3 molecular fragmentation approaches: connected subgraphs, substructure and alogp atom types, which are observed to show comparable performance. On the other hand, a combination of indices based on these fragmentation strategies enhances the predictivity of the built ensembles. The built models could be useful for screening new molecules with possible DENV, WNV and ZIKV inhibitory activities. ADMET modelers are encouraged to adopt undersampling algorithms in their workflows when dealing with imbalanced datasets.