Browsing by Author "Borchert, Jeff N"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Landscape and Residential Variables Associated with Plague-Endemic Villages in the West Nile Region of Uganda(The American journal of tropical medicine and hygiene, 2011) Moore, Sean M; Monaghan, Andrew; Borchert, Jeff N; Mpanga, Joseph T; Atiku, Linda A; Boegler, Karen A; Montenieri, John; MacMillan, Katherine; Gage, Kenneth L; Eisen, Rebecca JPlague, caused by the bacteria , is a severe, often fatal disease. This study focuses on the plague-endemic West Nile region of Uganda, where limited information is available regarding environmental and behavioral riskfactors associated with plague infection. We conducted observational surveys of 10 randomly selected huts within historically classified case and control villages (four each) two times during the dry season of 2006 ( N = 78 case huts and N = 80 control huts), which immediately preceded a large plague outbreak. By coupling a previously published landscape-level statistical model of plague risk with this observational survey, we were able to identify potential residence-based risk factors for plague associated with huts within historic case or control villages (e.g., distance to neighboring homestead and presence of pigs near the home) and huts within areas previously predicted as elevated risk or low risk (e.g., corn and other annual crops grown near the home, water storage in the home, and processed commercial foods stored in the home). The identified variables are consistent with current ecologic theories on plague transmission dynamics. This preliminary study serves as a foundation for future case control studies in the area.Item Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission(Parasites & vectors, 2015) Moore, Sean M; Monaghan, Andrew; Borchert, Jeff N; Mpanga, Joseph T; Atiku, Linda A; Boegler, Karen A; Montenieri, John; MacMillan, Katherine; Gage, Kenneth L; Eisen, Rebecca JThe distribution of human plague risk is strongly associated with rainfall in the tropical plague foci of East Africa, but little is known about how the plague bacterium is maintained during periods between outbreaks or whether environmental drivers trigger these outbreaks. We collected small mammals and fleas over a two-year period in the West Nile region of Uganda to examine how the ecological community varies seasonally in a region with areas of both high and low risk of human plague cases. Seasonal changes in the small mammal and flea communities were examined along an elevation gradient to determine whether small mammal and flea populations exhibit differences in their response to seasonal fluctuations in precipitation, temperature, and crop harvests in areas within (above 1300 m) and outside (below 1300 m) of a model-defined plague focus. The abundance of two potential enzootic host species (Arvicanthis niloticus and Crocidura spp.) increased during the plague season within the plague focus, but did not show the same increase at lower elevations outside this focus. In contrast, the abundance of the domestic rat population (Rattus rattus) did not show significant seasonal fluctuations regardless of locality. Arvicanthis niloticus abundance was negatively associated with monthly precipitation at a six-month lag and positively associated with current monthly temperatures, and Crocidura spp. abundance was positively associated with precipitation at a three-month lag and negatively associated with current monthly temperatures. The abundance of A. niloticus and Crocidura spp. were both positively correlated with the harvest of millet and maize. The association between the abundance of several small mammal species and rainfall is consistent with previous models of the timing of human plague cases in relation to precipitation in the West Nile region. The seasonal increase in the abundance of key potential host species within the plague focus, but not outside of this area, suggests that changes in small mammal abundance may create favorable conditions for epizootic transmission of Y. pestis which ultimately may increase risk of human cases in this region.