Browsing by Author "Boegler, Karen A."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Blood Meal Identification in Off-Host Cat Fleas (Ctenocephalides felis) from a Plague-Endemic Region of Uganda(The American journal of tropical medicine and hygiene, 2013) Graham, Christine B.; Borchert, Jeff N.; Black IV, William C.; Atiku, Linda A.; Mpanga, Joseph T.; Boegler, Karen A.; Moore, Sean M.; Gage, Kenneth L.; Eisen, Rebecca J.The cat flea, Ctenocephalides felis, is an inefficient vector of the plague bacterium (Yersinia pestis) and is the predominant off-host flea species in human habitations in the West Nile region, an established plague focus in Northwest Uganda. To determine if C. felis might serve as a Y. pestis bridging vector in the West Nile region, we collected on- and off-host fleas from human habitations and used a real-time polymerase chain reaction-based assay to estimate the proportion of off-host C. felis that had fed on humans and the proportion that had fed on potentially infectious rodents or shrews. Our findings indicate that cat fleas in human habitations in the West Nile region feed primarily on domesticated species. We conclude that C. felis is unlikely to serve as a Y. pestis bridging vector in this region.Item Comparison of Zoonotic Bacterial Agents in Fleas Collected from Small Mammals or Host-Seeking Fleas from a Ugandan Region Where Plague Is Endemic(Msphere, 2017) Bai, Ying; Osikowicz, Lynn M.; Kosoy, Michael Y.; Eisen, Rebecca J.; Atiku, Linda A.; Mpanga, Joseph T.; Boegler, Karen A.; Enscore, Russell E.; Gagea, Kenneth L.Fleas (n 407) were collected from small mammals trapped inside huts and surroundings of homesteads in five villages within the Arua and Zombo districts of Uganda. The most common flea species were Dinopsyllus lypusus (26%) and Xenopsylla cheopis (50%). Off-host fleas (n 225) were collected inside huts by using Kilonzo flea traps. The majority of the off-host fleas were Ctenocephalides felis (80%). All fleas were examined for the presence of Bartonella spp., Rickettsia spp., and Yersinia spp. Bartonella DNA was detected in 91 fleas, with an overall prevalence of 14%. Bartonella prevalence was significantly higher in rodent or shrew fleas than in off-host fleas (22% versus 1%). The majority of Bartonella-positive fleas were of the species D. lypusus (61%), X. cheopis (20%), and Ctenophthalmus calceatus (14%). Sequencing analysis identified 12 Bartonella genetic variants, 9 of which belonged to the zoonotic pathogen B. elizabethae species complex. Rickettsia DNA was detected in 143 fleas, giving an overall prevalence of 23%, with a significantly higher prevalence in off-host fleas than in rodent or shrew fleas (56% versus 4%).Item An Evaluation of Removal Trapping to Control Rodents Inside Homes in a Plague-Endemic Region of Rural Northwestern Uganda(Vector-Borne and Zoonotic Diseases, 2018) Eisen, Rebecca J.; Atiku, Linda A.; Boegler, Karen A.; Mpanga, Joseph T.; Enscore, Russell E.; MacMillan, Katherine; Gage, Kenneth L.Rodents pose a significant threat to human health, particularly in rural subsistence farming communities in Africa, where rodents threaten food security and serve as reservoirs of human pathogens, including the agents of plague, leptospirosis, murine typhus, rat-bite fever, Lassa fever, salmonellosis, and campylobacteriosis. Our study focused on the plague-endemic West Nile region of Uganda, where a majority of residents live in Uganda government-defined poverty, rely on subsistence farming for a living, and frequently experience incursions of rodents into their homes. In this study, we show that rodent removal was achieved in a median of 6 days of intensive lethal trapping with multiple trap types (range: 0–16 days). However, rodent abundance in 68.9% of homesteads returned to pretreatment levels within a median of 8 weeks (range 1–24 weeks), and at least a single rodent was captured in all homesteads by a median of 2 weeks (range 1–16 weeks) after removal efforts were terminated. Results were similar between homesteads that practiced rodent control whether or not their neighbors implemented similar strategies. Overall, intensive lethal trapping inside homes appears to be effective at reducing rodent abundance, but control was short lived after trapping ceased.Item Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus(PLoS ONE, 2012) Eisen, Rebecca J.; Borchert, Jeff N.; Mpanga, Joseph T.; Atiku, Linda A.; MacMillan, Katherine; Boegler, Karen A.; Montenieri, John A.; Monaghan, Andrew; Gage, Kenneth L.Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during interepizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (,725–1160 m) to higher elevation sites within the focus (,1380–1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence.Item Identification of Risk Factors for Plague in the West Nile Region of Uganda(The American journal of tropical medicine and hygiene, 2014) Eisen, Rebecca J.; MacMillan, Katherine; Atiku, Linda A; Mpanga, Joseph T.; Zielinski-Gutierrez, Emily; Graham, Christine B.; Boegler, Karen A.; Enscore, Russell E.; Gage, Kenneth L.Plague is an often fatal, primarily flea-borne rodent-associated zoonosis caused by Yersinia pestis. We sought to identify risk factors for plague by comparing villages with and without a history of human plague cases within a model-defined plague focus in the West Nile Region of Uganda. Although rat (Rattus rattus) abundance was similar inside huts within case and control villages, contact rates between rats and humans (as measured by reported rat bites) and host-seeking flea loads were higher in case villages. In addition, compared with persons in control villages, persons in case villages more often reported sleeping on reed or straw mats, storing food in huts where persons sleep, owning dogs and allowing them into huts where persons sleep, storing garbage inside or near huts, and cooking in huts where persons sleep. Compared with persons in case villages, persons in control villages more commonly reported replacing thatch roofing, and growing coffee, tomatoes, onions, and melons in agricultural plots adjacent to their homesteads. Rodent and flea control practices, knowledge of plague, distance to clinics, and most care-seeking practices were similar between persons in case villages and persons in control villages. Our findings reinforce existing plague prevention recommendations and point to potentially advantageous local interventions.Item Rat Fall Surveillance Coupled with Vector Control and Community Education as a Plague Prevention Strategy in the West Nile Region, Uganda(The American Society of Tropical Medicine and Hygiene, 2018) Boegler, Karen A.; Atiku, Linda A.; Enscore, Russell E.; Apangu, Titus; Tendo Mpanga, Joseph,; Acayo, Sarah; Kaggwa, John; Mead, Paul S.; Yockey, Brook M.; Kugeler, Kiersten J.; Schriefer, Martin E.; Horiuchi, Kalanthe; Gage, Kenneth L.; Eisen, Rebecca J.Plague, primarily a disease of rodents, is most frequently transmitted by fleas and causes potentially fatal infections in humans. In Uganda, plague is endemic to the West Nile region. Primary prevention for plague includes control of rodent hosts or flea vectors, but targeting these efforts is difficult given the sporadic nature of plague epizootics in the region and limited resource availability. Here, we present a community-based strategy to detect and report rodent deaths (rat fall), an early sign of epizootics. Laboratory testing of rodent carcasses is used to trigger primary and secondary prevention measures: indoor residual spraying (IRS) and community-based plague education, respectively. During the first 3 years of the program, individuals from 142 villages reported 580 small mammal deaths; 24 of these tested presumptive positive for Yersinia pestis by fluorescence microscopy. In response, for each of the 17 affected communities, village-wide IRS was conducted to control rodent-associated fleas within homes, and community sensitization was conducted to raise awareness of plague signs and prevention strategies. No additional presumptive Y. pestis-positive carcasses were detected in these villages within the 2-month expected duration of residual activity for the insecticide used in IRS. Despite comparatively high historic case counts, no human plague cases were reported from villages participating in the surveillance program; five cases were reported from elsewhere in the districts. Weevaluate community participation and timeliness of response, report the frequency of human plague cases in participating and surrounding villages, and evaluate whether a program such as this could provide a sustainable model for plague prevention in endemic areas.Item Use of Insecticide Delivery Tubes for Controlling Rodent-Associated Fleas in a Plague Endemic Region of West Nile, Uganda(Journal of medical entomology, 2014) Boegler, Karen A.; Atiku, Linda A.; Tendo Mpanga, Joseph; Clark, Rebecca J.; Delorey, Mark J.; Gage, Kenneth L.; Eisen, Rebecca J.Plague is a primarily flea-borne rodent-associated zoonosis that is often fatal in humans. Our study focused on the plague-endemic West Nile region of Uganda where affordable means for the prevention of human plague are currently lacking. Traditional hut construction and food storage practices hinder rodent exclusion efforts, and emphasize the need for an inexpensive but effective host-targeted approach for controlling fleas within the domestic environment. Here we demonstrate the ability of an insecticide delivery tube that is made from inexpensive locally available materials to reduce fleas on domestic rodents. Unbaited tubes were treated with either an insecticide alone (fipronil) or in conjunction with an insect growth regulator [(S)-methoprene], and placed along natural rodent runways within participant huts. Performance was similar for both treatments throughout the course of the study, and showed significant reductions in the proportion of infested rodents relative to controls for at least 100 d posttreatment.