Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of NRU
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bigirwa Ayesiga, Stella"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic Variation Among Tropical Maize Inbred Lines from NARS and CGIAR Breeding Programs
    (Plant Molecular Biology Reporter, 2022) Bigirwa Ayesiga, Stella; Rubaihayo, Patrick; Oloka, Bonny Michael; Onziga Dramadri, Isaac; Edema, Richard; Sserumaga, Julius Pyton
    The use of molecular markers allows for precise estimates of genetic diversity, which is an important parameter that enables breeders to select parental lines and designing breeding systems. We assessed the level of genetic diversity and population structure in a panel of 151 tropical maize inbred lines using 10,940 SNP (single nucleotide polymorphism) markers generated through the DArTseq genotyping platform. The average gene diversity was 0.39 with expected heterozygosity ranging from 0.00 to 0.84, and a mean of 0.02. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual inbred lines within the populations while only 3% was distributed among the populations. Both neighbor-joining clustering and STRU CTU RE analysis classified the inbred lines into four major groups. The crosses that involve inbred lines from most divergent subgroups are expected to generate maximum heterosis and produce wide variation. The results will be beneficial for breeders to better understand and exploit the genetic diversity available in the set of maize inbred lines we studied.

Research Dissemination Platform copyright © 2002-2025 NRU

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback