Browsing by Author "Batte, Michael"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Performance of Narita Banana Hybrids in the Preliminary Yield Trial for Three Cycles in Uganda(NARO, 2015) Tushemereirwe, Wilberforce; Batte, Michael; Nyine, Moses; Tumuhimbise, Robooni; Barekye, Alex; Ssali, Tendo; Talengera, David; Kubiriba, Jerome; Lorenzen, Jim; Swennen, Rony; Brigitte, UwimanaBananas (Musa spp.) are an indispensable part of life in Eastern Africa providing up to one fifth of total calorie consumption per capita. Unlike many staple crops, bananas deliver food throughout the year, making them an ideal crop for household incomes, food and nutrition security. However, banana yields are low due to several factors amongst others pests and diseases: weevils and nematodes, Fusarium wilt, bacterial wilt and black Sigatoka. There are many potential technology-based interventions for increasing banana yields but host plant resistance is the most appropriate and cost effective intervention given the current stage of development of banana systems in the region. Host-plant resistance also offers significant spill over benefits for human health and positive environmental impacts. Therefore, the Ugandan National Agricultural Research Organization (NARO) and the International Institute of Tropical Agriculture (IITA) jointly breed bananas largely for host-plant resistance to improve banana yields. One of the most important current products of their joint banana breeding efforts is secondary triploid hybrids for food and juice herein referred to as NARITA hybrids. This name specifies the contribution of NARO and IITA. An earlier report (NARITA report 1) presented the results of 25 NARITA hybrids for cycles 1 and 2 combined. The current report presents and discusses the results of the same 25 NARITA hybrids (18 for food and seven for juice) evaluated for three crop cycles at Sendusu in central Uganda and analyzed in combined and separate forms. Results of individual NARITA hybrids within cycles showed high degree of variation for the traits assessed, implying a high potential for selection among the NARITA hybrids evaluated. For example, the bunch weight (BWT) of the individual NARITA hybrids ranged from as low as 5 kg for NARITA 19 to as high as 45 kg for NARITA 24 with a mean of 17.8 kg. Averaged across three cycles, BWT ranged from as low as 8.7 kg for NARITA 19 to as a high as 30.4 kg for NARITA 24. Ninety six per cent of the hybrids had a mean BWT greater than the mean of the local check (Mbwazirume) (11.0 kg). Similarly, NARITA hybrids were better than Mbwazirume for most of the other traits assessed. Eighty four per cent of the NARITA hybrids evaluated were better than the best founder parent (NFUUKA) for bunch yield (t ha-1), indicative of the significant breeding progress made by NARO and IITA in this breeding program. This could be confirmed by the positive better founder parent heterosis for BWT recorded by all NARITA hybrids, with NARITA 17, NARITA 18, NARITA 7 (M9), NARITA 21 and NARITA 14 (all food type) exhibiting highest heterosis. Results of combined analysis of variance (ANOVA) showed significant differences among the NARITA hybrids for all the 14 traits assessed including BWT. This indicated the potential for further selection and improvement of the NARITA hybrids for all the 14 traits. Additionally, results of combined ANOVA showed significant differences among three crop cycles for all the traits assessed except days to bunch maturity (DTM) and number of functional leaves at flowering (NFLF), indicating that the selection of banana hybrids could best be done at certain cycle numbers. The performance of NARITA hybrids for most traits was much higher at cycles 2 and 3 than at cycle 1 with the highest performance observed at cycle 3. However, the difference between cycle 2 and cycle 3 was not significantly different for most traits including BWT. The clear implication of this is that selection for banana hybrids should be done at cycle 2 to reduce costs involved in the management of trials since banana trials are always huge considering the size of bananas as well as spacing of 3 x 3 m or 2 x 3 m commonly used. Also, banana performance data analysis should not be based on a combined evaluation of cycle 1 and 2, as was previously done for NARITA report 1, but on an analysis of individual cycles, preferably cycle 2. The limitation of single site and single line plots is acknowledged. Hence, NARITA hybrids will be evaluated in larger and replicated multi-location trials to ascertain their actual performance, adaptability and stability in comparison with the local EAHB cultivars. Nevertheless, based on these preliminary results, potential high yielding banana hybrids combining resistance to black Sigatoka and farmer-preferred quality traits exist within this NARITA population.Item Seed Set Patterns in East African Cooking Bananas (Musa spp.) are Dependent on Weather Before, During, and After Pollination(Research Square, 2020) Waniale, Allan; Mukasa, Settumba B.; Tugume, Arthur K.; Tumuhimbise, Robooni; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Swennen, RonySeed set in banana (Musa spp.) is influenced by weather but the most critical weather attribute(s) and the critical period are unknown. Such information is of paramount importance to increase seed set for banana breeding programs. Three female fertile East African cooking bananas (EACBs), ‘Enzirabahima’ (AAA), ‘Mshale’ (AA), and ‘Nshonowa’ (AA) were pollinated with the highly male fertile wild banana ‘Calcutta 4’ (AA). At full maturity, bunches were harvested and ripened and seeds extracted from ripe fruit pulp. Seed set was then correlated with weather before, during, and after pollination. Results: Seed set was positively correlated with high temperatures (r=0.172 – 0.488), solar radiation (r=0.181 – 0.282) and negatively correlated with rainfall (r=-0.214 – -0.238) and relative humidity (RH) (r=-0.158 – -0.438) between 75 and 15 days before pollination (DBP). The pattern of weather association was cultivar-dependent with ‘Nshonowa’ having the strongest significant associations. At the time of pollination, high average temperatures were critical for seed set in ‘Enzirabahima’ (r=0.214, P<0.01) while high morning RH was critical for ‘Mshale’ (r=0.299, P<0.01). After pollination, high morning temperatures were associated with seed set (r=0.150 – 0.429) between 15 days to 90 days after pollination (DAP). High average temperatures were negatively correlated with seed set in ‘Mshale’ and ‘Nshonowa’ from 45 DAP to time of harvest (r=-0.208 – -0.344). Coefficients of correlation were generally highest 15 DBP especially for ‘Mshale’ and ‘Nshonowa.’ Principle component analysis showed that average and maximum temperature are the most important variables in the entire data set. Conclusion: Coefficients of correlation were generally less than 0.5 partly as a result of weather involvement in seed set at several floral development stages; before, during, and after pollination. The most critical developmental stage is 15 DBP especially for ‘Mshale’ and ‘Nshonowa’ as they had the high correlation coefficients. Average temperature should be the main focus for seed set increase in banana.Item Seed Set Patterns in East African Cooking Bananas are Asymmetric in Bunches and Fruits(Research Square, 2020) Waniale, Allan; Mukasa, Settumba B.; Tugume, Arthur K.; Tumuhimbise, Robooni; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Swennen, RonyLow female fertility in bananas is the biggest hurdle for banana breeding. The aim of this study was to determine seed set patterns in East African cooking bananas EACBs to inform future decisions on a more targeted approach of increasing seed set and subsequently banana breeding efficiency. Matooke (AAA) and Mchare (AA) bananas are genetically distinct but belong to the same genetic complex, they referred to as EACBs. Seed set patterns in ‘Enzirabahima’ (AAA), ‘Mshale’ (AA) and ‘Nshonowa’ (AA) all with residual fertility were examined after hand pollination with a highly male fertile wild banana ‘Calcutta 4’ (AA). Results: Seed set in ‘Enzirabahima’ is predominant in distal hands. Mchare cultivars have a slightly more even distribution of seeds in their hands compared to ‘Enzirabahima.’ There is a gradual increase in seed set from proximal to distal hands with a slight drop in the last hand. This pattern is more definite in ‘Enzirabahima’ and ‘Mshale’ while ‘Nshonowa’ has a somewhat inconsistent pattern. There is also a drop in seed set per 100 fruits per hand from small to larger bunches. However, larger bunches have a higher pollination success compared to smaller bunches. They therefor set more seed on 100 fruits per hand and per bunch basis if bunches without seed are accounted for. Pollination success rate increases from smaller to larger bunches of EACBs. Seed set is biased toward the distal third part of fruits of examined EACBs as well tetraploid Matooke hybrid ‘401K-1’ (AAAA) and improved diploid ‘Zebrina’ GF (AA) that were used for comparison. In comparison, in the highly female fertile ‘Calcutta 4,’ seed set is along the entire length of the fruit. Conclusion: Seed set bias in the distal hands and distal end of fruits suggests a systematic mechanism rather than a random occurrence. It is expected that this information will provide a foundation for increased crossbreeding efficiency in bananas.Item Seed Set Patterns in East African Highland Cooking Bananas Are Dependent on Weather before, during and after Pollination(Horticulturae, 2021) Waniale, Allan; Swennen, Rony; Mukasa, Settumba B.; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Tumuhimbise, RobooniSeed set in banana is influenced by weather, yet the key weather attributes and the critical period of influence are unknown. We therefore investigated the influence of weather during floral development for a better perspective of seed set increase. Three East African highland cooking bananas (EAHBs) were pollinated with pollen fertile wild banana ‘Calcutta 40 . At full maturity, bunches were harvested, ripened, and seeds extracted from fruit pulp. Pearson’s correlation analysis was then conducted between seed set per 100 fruits per bunch and weather attributes at 15-day intervals from 105 days before pollination (DBP) to 120 days after pollination (DAP). Seed set was positively correlated with average temperature (P < 0.05–P < 0.001, r = 0.196–0.487) and negatively correlated with relative humidity (RH) (P < 0.05–P < 0.001, r = 0.158–0.438) between 75 DBP and the time of pollination. After pollination, average temperature was negatively correlated with seed set in ‘Mshale’ and ‘Nshonowa’ from 45 to 120 DAP (P < 0.05–P < 0.001, r = 0.213–0.340). Correlation coefficients were highest at 15 DBP for ‘Mshale’ and ‘Nshonowa’, whereas for ‘Enzirabahima’, the highest were at the time of pollination. Maximum temperature as revealed by principal component analysis at the time of pollination should be the main focus for seed set increase.Item Seed Set Patterns in East African Highland Cooking Bananas Show Asymmetric Distribution in Bunches and Fruits(Agronomy, 2021) Waniale, Allan; Swennen, Rony; Mukasa, Settumba B.; Tugume, Arthur K.; Kubiriba, Jerome; Tushemereirwe, Wilberforce K.; Batte, Michael; Brown, Allan; Tumuhimbise, RobooniLow female fertility in bananas is the biggest hurdle for banana breeding. The aim of this study was to determine seed set patterns in East African Highland Cooking bananas (EAHBs) to inform future decisions on a more targeted approach of increasing seed set and subsequently banana-breeding efficiency. Matooke (AAA) and Mchare (AA) bananas are genetically distinct but belong to the same genetic complex, referred to as EAHBs. Seed set patterns in “Enzirabahima” (AAA), “Mshale” (AA), and “Nshonowa” (AA), all with residual fertility, were examined after hand pollination with a highly male fertile wild banana “Calcutta 4” (AA). Seed set in “Enzirabahima” is predominant in distal hands. Mchare cultivars have a slightly more even distribution of seeds in their hands compared to “Enzirabahima”. There is a gradual increase in seed set from proximal to distal hands with a slight drop in the last hand. This pattern is more definite in “Enzirabahima” and “Mshale”, while “Nshonowa” has a somewhat inconsistent pattern. There is also a drop in seed set per 100 fruits per hand from small to larger bunches. However, larger bunches have a higher pollination success compared to smaller bunches. They therefore set more seed on 100 fruits per hand and per bunch basis, if bunches without seed are accounted for. Pollination success rate increases from smaller to larger bunches of EAHBs. Seed set is biased toward the distal third part of fruits of examined EAHBs, as well as tetraploid Matooke hybrid “401K-1” (AAAA), and improved diploid “Zebrina” GF (AA) that were used for comparison. In comparison, in the highly female fertile “Calcutta 4”, seed set is along the entire length of the fruit. Seed set bias in the distal hands and distal end of fruits suggests a systematic mechanism rather than a random occurrence. It is expected that this information will provide a foundation for increased crossbreeding efficiency in bananas.