Browsing by Author "Banadda, Noble"
Now showing 1 - 20 of 44
Results Per Page
Sort Options
Item Advanced Education and Training Programs to Support Renewable Energy Investment in Africa(International Journal of Education and Practice, 2017) Kimuli, Daniel; Nabaterega, Resty; Banadda, Noble; Kabenge, Isa; Ekwamu, Adipala; Nampala, PaulAfrican countries have initiated programs to generate electricity from renewable sources such as; wind, solar, biomass and hydropower. These initiatives are intended to reduce the carbon footprint of these countries in the wake of heavy dependency on fossil fuels and also provide cheap and accessible electricity to rural areas. These renewable energy programs are expected to deliver regional development and economic empowerment. However, the lack of trained manpower for repair and maintenance of renewable energy technologies devices is likely to result in failure of these technologies, cause losses in revenue and reduction in consumer faith in renewable energy technologies. African universities must be at the core of solving these challenges by training specialized professionals in renewable energy at graduate level and through short courses to meet the increasing demands for qualified human resource to support the sector. Thus to establish the “readiness” of Universities in Africa to offer advanced education and training in renewable energy, a review of all Masters Courses, Ph.D. programs and short courses was carried out. The results identified 21 English-language Masters courses, 3 providers of Ph.D. studies and 9 short courses in or with significant renewable energy content. Generally, there is inadequate advanced training in renewable energy especially at Ph.D. level in Africa thus the need to attract more African Universities to offer such programs at both masters and Ph.D. levels.Item Assessing Land Use and Land Cover Changes in the Murchison Bay Catchment of Lake Victoria Basin in Uganda(Journal of Sustainable Development, 2018) Kiggundu, Nicholas; Abugri Anaba, Listowel; Banadda, Noble; Wanyama, Joshua; Kabenge, IsaThe Murchison Bay catchment in the northern shoreline of Lake Victoria basin is a high valued ecosystem because of the numerous human-related activities it supports in Uganda. The catchment has undergone tremendous human-induced land use/cover changes, which have not been quantified. This study aimed at quantifying the land use/cover changes as well as the rate at which these changes occurred over the last three decades in the catchment. This was achieved using remote sensing techniques and Geographic Information System (GIS) to analyse and contextualize the changes. To that effect, images of Landsat satellites MSS, TM, ETM+ and OLI were interpreted using supervised image classification technique to determine the land use/land cover changes from 1984 to 2015. The obtained results indicated that the catchment has undergone huge land use and land cover transformations over the last three decades attributable to rapid population growth and urbanization. The prevailing changes in footprint between 1984 and 2015 were expansions of built–up land (20.58% to 49.59%) and open water bodies (not detected in 1984 to 1.74%), and decreases in the following sectors: agricultural lands (from 43.88% to 26.10%), forestland (from 23.78% to 17.49%), and wetlands (from 11.76% to 5.08%). The changes pose a threat to the environment and water quality of the Murchison Bay and consequently increases National Water and Sewerage Corporation water treatment costs. Therefore, there is the need to take critical and practical measures to regulate and police land use, water use rights and conserve the environment especially wetlands.Item Bio-Filtration Technologies for Filtering Ammonia in Fish Tank Effluent for Reuse—A Review(Journal of Environmental Science and Engineering, 2019) Grism Obeti, Lawrence; Wanyama, Joshua; Banadda, Noble; Candia, Alphonse; Onep, Samuel; Walozi, Ronald; Ebic, AndrewPeri-urban fish farms with limited access to open natural water bodies draw fresh water from urban water supply and dug wells, which is unreliable and costly. Reuse of fish pond effluent is also limited by high ammonia concentration (> 0.3 mg/L) that renders water toxic and is stressful to fish. Despite the existence of several fish effluent treatment methods, not all may be appropriate for a particular location. This review article therefore examines the various fish effluent treatment methods to aid selection of the most suitable one(s) for peri-urban areas. The key parameters considered in their comparison were: initial, operational and maintenance costs; ammonia removal efficiency; energy consumption and land requirement. The effluent treatment methods are both conventional and non-conventional. Despite a slight higher treatment efficiency and less space requirement by conventional methods, they mainly require reliable power supply for continuous running, highly skilled labor for operation and maintenance leading to high operational costs. In addition, their investment costs are higher than non-conventional methods, hence not widely applied in developing countries and majority have broken down. On the other hand, non-conventional methods such as constructed wetlands are widely in use for treating effluent mainly due to their cost effectiveness and no or little energy requirement. Constructed wetlands were found most suitable bio-filtration system for treating fish effluent because they are cost effective, require less skilled labor and still have better effluent treatment though space required is slightly more. Vegetables (lettuce, collards, etc.) have potential to grow in constructed wetlands thus form vegetable-based bio-filtration units which serve not only as bio-filters but also provide additional sources of nutrition and income. This review indicated limited information on the appropriate size and performance of vegetable-based bio-filtration unit utilizing indigenous vegetables and recommended further research to explore the idea.Item The Bioprocessing Quick Wins from Avocado Fruit in Uganda(Advances in Bioscience and Biotechnology, 2020) Baidhe, Emmanuel; Kiggundu, Nicholas; Banadda, NobleBioprocessing can help redeem the economic value for avocado (Persea americana) in Uganda. This study reviews the virgin potential of avocado bioprocessing in Uganda. Avocado consists of flesh, seed, and peel. The review indicates that the waste seed and peel are vital for development of high-value products. Both the edible part and waste (peel and seed) can be used for biogas production through a solid-state fermentation process. Biodiesel can be developed using avocado seed oil through a process called transesterification. Avocado oil is a better alternative for biodiesel production compared to waste cooking oil as it requires no further conversions processes for transforming fatty acids to esters. The starch-rich avocado seed is a suitable substrate for bioethanol, pigment and starch production. The high starch content places the avocado fruit as a potential: 1) raw material for the production of bioplastics; 2) substrate for bacterial culture media production as opposed to potatoes, cereals, and cassava that double as a staple food. Avocado seeds can also be used for the production of antioxidants relevant for preventing enzymatic browning, thereby increasing product shelf life. Despite the quick wins, there is a need for increased research, financing, personnel training and development of appropriate policies to spur the benefits and untapped potential of avocado bioprocessing in Uganda. The circular economy of avocado waste alone into high-value products could increase gains in the environment and stimulate industrial development, especially the cosmetic, food and pharmaceutical industries in Uganda.Item Bioremediation Technology Potential for Management of Soil and Water Pollution from Anticipated Rapid Industrialization and Planned Oil and Gas Sector in Uganda: A Review(Journal of Environmental Protection, 2017) Kabenge, Isa; Katimbo, Abia; Kiggundu, Nicholas; Banadda, NobleOil exploitation in many African countries is associated with litigation and conflicts to water and soil pollution. It is because of inadequate planning for management of oil spills and industrial effluents in environmentally sustainable manner. Uganda’s natural resources such as soils and water bodies are threatened by contamination due to rapid industrialization and rural-urban migration in established Industrial Business Parks and planned oil and gas production at Albertine Graben Region. The low level of compliance to industrial effluents discharge standards relevant to specific environmental receptors and activities within oil and gas sector development pose a big question of how to sustain the biodiversity and natural resource management. Experiences from elsewhere have shown bioremediation as a viable and proven option to provide potentially manageable solutions to resulting pollution as a substitute to modern well-known remediation methods, for it is relatively cheaper, more efficient and minimal toxic byproducts after treatment. The most used bioremediation agents in different studies reviewed are bacterial species especially Pseudomonas and Bacillus , followed by Aspergillus a fungi species, microalgae and aquatic plants such as duckweed , macrophytes and pteridophytes . Regardless of the waste produced in either oil and gas sector or industries, these agents have shown greater biodegradation rates. Pseudomonas sp. has a degradation efficiency of oil compounds ranging from 90% - 100%, and Aspergillus sp. 75% - 95%. Some aquatic plants can thrive in created wetlands with relatively still water such as Phragmites australis which can degrade hydrocarbons especially Aromatic compounds with benzene ring up to 95%. It can thrive in salty water with high pH range of 4.8 - 8.2. With industrial wastewater, algae is the most dominant with the degradation rates varying from 65% -100% and bacteria at 70% - 90%. Most of the reported results are in the developed country context. In developing countries, duckweed is reported as the commonest aquatic plant in wastewater treatment for removal of heavy metals because it is more tolerant to a wide range of environmental conditions and produce biomass faster. It has a removal rate of heavy metals between 90% and 100%. Basing on literature data analysis, bacteria are more suitable for treating water from oil pollution using Pseudomonas sp. Phragmites australis is suited for cleaning up oil in both water and soil. Duckweed is the best in treating water polluted with industrial effluents. This paper presents the different bioremediation methods that Uganda can potentially apply to mitigate the increased risk of environmental pollutions from planned industrialization and oil and gas development in the Albertine Graben Region.Item Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock(Journal of Sustainable Development, 2018) Kabenge, Isa; Omulo, Godfrey; Banadda, Noble; Seay, Jeffrey; Zziwa, Ahamada; Kiggundu, NicholasUganda is the world’s second largest producer and consumer of banana after India. This has resulted into vast quantities of banana wastes, including the leaves, pseudostem, stalks, rejected and rotten fruits and the fruit peels. This study focuses on the characterization of banana peels to yield banana peels vinegar (BPV), tar and biochar as value added products that can be useful to farmers. Dried banana peels were characterized via proximate, ultimate, lignocellulosic, thermogravimetric (TG), and calorific value analyses. The obtained results showed that the volatile matter and fixed carbon contents were 88.02% and 2.70% while carbon, nitrogen and sulphur were 35.65%, 1.94% and 20.75 ppm respectively. The hemicellulose, cellulose and lignin contents were 41.38%, 9.90% and 8.90% while the higher and lower heating values were 16.15 MJ/kg and 14.80 MJ/kg. The maximum devolatilization rate in the banana peel biomass occurred in the temperatures range of 450–550oC which was taken as the slow pyrolysis regime temperature. The high levels of fixed carbon, volatile matter and ash contents were strong indicators that banana wastes are adequate feedstock for pyrolysis work to yield bio-infrastructure products. Similarly, the lignin, cellulose and hemicellulose fractions had significant correlation between the biomass heating values and the eventual chemical compounds present BPV and biochar. The characterization properties of the banana peels are akin to the leaves and pseudostem and thus are suitable for pyrolysis process.Item Characterization of Slow Pyrolysis Wood Vinegar and Tar from Banana Wastes Biomass as Potential Organic Pesticides(Journal of Sustainable development, 2017) Omulo, Godfrey; Willett, Sarah; Seay, Jeffrey; Banadda, Noble; Kabenge, Isa; Zziwa, Ahamada; Kiggundu, NicholasSlow pyrolysis process has been used in the recent past to yield wood vinegar from various biomass wastes with a quest to investigate their chemical composition and possible uses. This study utilizes the abundant banana wastes in Uganda including leaves, pseudostem and peels (mpologoma, kisansa and kibuzi species) in the slow pyrolysis process to yield vinegar, tar and biochar. Characterization of these banana wastes’ vinegar and tar fractions were investigated via chromatographic and physicochemical analysis. The principle compounds present in the banana wastes vinegar and tar as per percentage peak areas were acids (68.6%), alcohols (62.5%), ketones (27.6%), phenols (25.7%) and furans (21.8%). The products characterization indicate that vinegar and tar contain compounds that can be used as pesticides, termiticide, fungicides, insect repellants, anti-leaching and soil degradation agents. Thus wood vinegar and tar can have sustainable impacts on agricultural sectors and chemical industries especially for developing countries.Item Contextual investigation of factors affecting sludge accumulation rates in lined pit latrines within Kampala slum areas, Uganda(Water SA, 2016) Zziwa, Ahamada; Lugali, Yvonne; Wanyama, Joshua; Banadda, Noble; Kabenge, Isa; Kambugu, Robert; Kyazze, Florence; Kigozi, Julia B.; Tumutegyereize, PeterPit latrines in slums areas of Uganda fill up faster than might be expected from some estimates owing to inappropriate use and failure to consider critical factors affecting sludge accumulation rates at the planning, design and construction stages. This study sought to investigate factors affecting filling rates of lined pit latrines in slum areas of Kampala with the goal of contributing to accurate planning, design, construction, emptying and overall maintenance. Fifty-five pit latrines were selected from the five divisions of Kampala city using stratified random sampling. Data collected included: number of users, frequency of emptying, years taken since last emptying, type of non-faecal materials deposited, cross-sectional dimensions of the pit, rate of sludge degradation and geo-physical factors of pit location. Methods used were: field surveys, questionnaires and key informant interviews plus on-site depth measurement. Mass loss tests to investigate the rate of sludge degradation were carried out in the laboratory at moisture content levels similar to those in pit latrines. Sludge accumulation rates were calculated using volume of sludge in the pit, number of users and time taken since last emptying. Statistical analyses included correlation and one-way ANOVA. Results revealed that number of users and type of material deposited in the pit latrines, especially non-faecal matter, had a significant (p < 0.05) effect on sludge accumulation rate. Public pit latrines with a higher number of users had lower sludge accumulation rates and this was attributed to greater degradation taking place and greater restriction on entry of non-faecal matter. The rate of sludge degradation was higher at 90–100% than 80–90% moisture content, due to better degradation conditions. Tighter restrictions on non-faecal material deposition into pit latrines are recommended to reduce filling rates of pit latrines in slum areas.Item Designing a solar and wind hybrid system for small-scale irrigation: a case study for Kalangala district in Uganda(Energy, Sustainability and Society, 2020) Ssenyimba, Shaffic; Kiggundu, Nicholas; Banadda, NobleDynamics in rainfall patterns are posing a threat to crop production in Uganda. Irrigation can be used to ensure constant production; however, the motorized powered irrigation methods are quite costly to run in addition to being environmentally unsustainable. There is thus need for alternative irrigation methods. Renewable energy sources which are readily available can be used to power irrigation systems. This study hence sought to design an appropriate wind-solar hybrid system for irrigating 1 acre of banana plantation in Kalangala district, Uganda. Methods: Using metrological data, mean wind speed and monthly solar irradiance of global radiation horizontal for the district were analysed. A wind-solar hybrid system was optimally designed for a standalone drip irrigation system of 450 banana plants on 1-acre land with water requirement of 33.73m3 d−1. The wind turbine was simulated to analyse for static pressure, cut plane flow behaviour, turbulence intensity and stress distribution exposed at 20ms−1 wind speed. A cost analysis was done to estimate the total project investment, maintenance and operational cost, annual project gross income, net income stream and the annual net real rate of returns. Results and conclusions: The simulation results showed that the system could effectively operate at speeds of 20m s−1 without deformation. The net present value of income stream for the first 5 years at r = 5% was 12,935,468 UGX with a net real rate of return of 3.5% per year. The study will, therefore, be a useful guideline in making investment decisions in hybrids irrigation systems.Item Development of maize cob-based biochar filter for water purification(Water and Environment Journal, 2021) Oluk, Isaac; Nagawa, Christine Betty; Banadda, Noble; Tumutegyereize, Peter; Achaw Owusu, ProsperThe study aimed at biochar production from maize cob and its performance in improving water physiochemical attributes. Three feedstock masses (2, 2.5, 3 kg) were used for biochar production. Nine treatment combinations of T1L1, T1L2, T1L3, T2L1, T2L2, T2L3, T3L1, T3L2 and T3L3 in triplicate were used for biochar performance. Biochar yield of 50% was averagely achieved at slow pyrolysis conditions (300 to 600°C) and 120 min residence time. Biochar had 4.13% moisture content, 6.86% ash, 17.70% volatile matter, 71.28% fixed carbon, and a pH of 10.27. Odour, colour, and total hardness of the wastewater improved after filtration using biochar to acceptable levels for potable water use. Total hardness reduced by 51.9% in T2L2 and 44.4% in T3L2. Findings front maize cob biochar as a purification technology for domestic potable water use. There is need for maize cob biochar performance on heavy metals and when it is sandwiched with other materials.Item Effect of polyaluminium chloride water treatment sludge on effluent quality of domestic wastewater treatment(African Journal of Environmental Science and Technology, 2013) Nansubuga, Irene; Banadda, Noble; Babu, Mohammed; Verstraete, Willy; Wiele, Tom Van deWater resources degeneration is accelerated by the discharge of untreated wastewater and its byproducts, hence, reuse of these wastes is a major contributor to sustaining fresh water for the coming decades. In this study, the reuse of polyaluminium water treatment sludge (PA-WTS) as a flocculant aid to improve the effluent quality of wastewater during primary sedimentation is evaluated and presented. PA-WTS was collected from Gabba water treatment plant (Gabba WTP) Uganda, after the coagulation-flocculation process that makes use of aluminium chlorohydrate (ACH). The average aluminium residue concentration in PA-WTS was 3.4 mg/L. During this study, batch laboratory experiments were conducted in a jar-test apparatus in which different doses of PA-WTS were added. The results obtained showed a decrease in total suspended solids (TSS), chemical oxygen demand (COD), total ammonium nitrogen (TAN), and total phosphates (TP) in the supernatant after 30 min of settlement. The optimal PA-WTS dosage of 37.5 mL/L significantly (P<0.05) increased the TSS, TP and COD removal efficiencies by 15, 22 and 30%, respectively. It can be concluded that the PA-WTS positively complimented the sedimentation process in the primary treatment of wastewater to achieve better effluent quality.Item Effect of Temperature Fluctuation, Substrate Concentration, and Composition of Starchy Substrates in Mixture and Use of Plant Oils as Antifoams on Biogas Production(Environmental Progress & Sustainable Energy, 2019) Tumutegyereize, Peter; Ketlogetswe, Clever; Gandure, Jerekias; Banadda, NobleThis work investigated the effect of temperature fluctuations, substrate concentration and composition on foaming in anaerobic co-digestion of matooke, cassava, and sweet potato peels for biogas production as well as the use of plant oils as antifoams. In general, obtained results show that temperature fluctuations from mesophilic (≥25 C) to psychrophilic range (<25 C) is the major factor behind foaming in anaerobic digestion. Specifically, at concentrations of 6 and 9 g VS/L with methane yield of 1228.69 and 735.55 Nml CH4/g VS, respectively, for 2:0:1 ratio, there was no foaming until after 7.6 days compared with the other ratios where foaming generally started after 3.5 days. This indicated that, apart from high substrate concentration, foaming is also a function of substrate composition. Plant oils were found to suppress foaming only if temperatures were above 25 C, indicating temperature fluctuations to be the main factor in foaming even in the presence of antifoams.Item Effect of Variation in Co-Digestion Ratios of Matooke, Cassava and Sweet Potato Peels on Hydraulic Retention Time, Methane Yield and Its Kinetics(Journal of Sustainable Bioenergy Systems, 2016) Tumutegyereize, Peter; Ketlogetswe, Clever; Gandure, Jerekias; Banadda, NobleThis paper presents the results of batch anaerobic co-digestion of matooke, cassava, and sweet potato peels and vines. These agricultural wastes and others form the biggest portion of household wastes in developing countries. However, they have remained an unexploited resource amidst the ever increasing needs of clean energy and waste disposal challenges. Efforts to use them individually as biogas substrates have been associated with process acidification failure resulting from their fast hydrolysis. The aim of this work was to exploit agricultural wastes is co-digestion among themselves and assess their effect on methane yield and its kinetics, pH and hydraulic retention time (HRT). Sixteen ratios of Matooke peels (MP), cassava peels (CP) and sweet potato peels (SP) were assessed in duplicate. Methane yield and its kinetics, pH and HRT demonstrated dependence on the proportion of substrates in the mixture. Depending on the ratio mixture, HRT increased to 15 days compared to less than 5 days for single substrates, hydrolysis rate constant (k) reduced to a range of 0.1 - 0.3 d−1 compared to single substrates whose k-values were above 0.5 d−1, pH was maintained in the range of 6.38 - 6.43 and CH4 yield increased by 15% - 200%. Ratios 2:1:0, 2:0:1, 0:1:2, 1:1:1 and 1:1:4 were consistent all through in terms of model fitting, having a positive synergetic effect on HRT, hydrolysis rate constant, lag phase and methane yield. However, more research is needed in maintaining the pH near the neutral for process stability assurance if household wastes are to be used as standalone substrates for biogas production without being co-substrates with livestock manure.Item Effects of Incorporating Biochar into the Soil using Power Tiller and Ox Plough(Sustainable Agriculture Research, 2017) Ndhlovu, Masauso; Kiggundu, Nicholas; Wanyama, Joshua; Banadda, NobleExisting knowledge about biochar is derived from trials where biochar incorporation into the soil is done by hands, a practice too tedious to scale-up to commercial levels. To enhance scalability, biochar incorporation needs to be integrated into conventional mechanised tillage systems. This study aimed at assessing the effects of incorporating biochar by power tiller and ox-plough on soil water retention, maize growth and yield. A 2 x 3 factorial experiment was conducted in a split-plot design with biochar incorporating method as a main plot factor and biochar level as subplot factor, on ferralsols of central Uganda. Incorporation methods were by power tiller and ox-plough with hand mixing in planting basins as a control, while levels of biochar were 0 and 10 t ha-1 application rates. Data was analysed using two-way ANOVAs in Minitab for significant differences among incorporation methods. Results showed that incorporating biochar by power tiller significantly increased water retention effect of biochar by 27.5% (p < 0.05), while no significant effect was observed (p ≥ 0.05) when incorporated by ox-plough, compared to hand mixing. No significant difference on growth and yield was observed (p ≥ 0.05) as a result of incorporating biochar by power tiller and ox-plough instead of hands in planting basins. These findings suggest that biochar incorporation can be scaled-up, to commercial levels, through the use of power tiller and ox-plough, without negative effects on biochar performance. It is recommended that promotion of biochar technology encompasses the use of power tillers and ox-ploughs to enhance scalability.Item Enhancement of biogas potential of primary sludge by co-digestion with cow manure and brewery sludge(International Journal of Agricultural and Biological Engineering, 2015) Nansubuga, Irene; Banadda, Noble; Babu, Mohammed; Vrieze, Jo De; Verstraete, Willy; Rabaey, KorneelAnaerobic digestion (AD) has long been used to treat different types of organic wastes especially in the developed world. However, organic wastes are still more often considered as a waste instead of a resource in the developing world, which contributes to environmental pollution arising from their disposal. This study has been conducted at Bugolobi Sewage Treatment Plant (BSTP), where two organic wastes, cow manure and brewery sludge were co-digested with primary sludge in different proportions. This study was done in lab-scale reactors at mesophilic temperature and sludge retention time of 20 d. The main objective was to evaluate the biodegradability of primary sludge generated at BSTP, Kampala, Uganda and enhance its ability of biogas production. When the brewery sludge was added to primary STP sludge at all proportions, the biogas production rate increased by a factor of 3. This was significantly (p < 0.001) higher than observed gas yield (337±18 mL/(L•d)) in the control treatment containing (only STP sludge). Co-digesting STP sludge with cow manure did not show different results compared to the control treatment. In conclusion, Bugolobi STP sludge is poorly anaerobically degradable with low biogas production but co-digestion with brewery sludge enhanced the biogas production rate, while co-digestion with cow manure was not beneficial.Item Estimation of Methane Generation Based on Anaerobic Digestion and Mass Balance at Kiteezi Landfill, Kampala, Uganda(African Journal of Environmental Science and Technology, 2015) Mboowa, Drake; Banadda, Noble; Kiggundu, Nicholas; Kabenge, Isa; Komakech, Allan JohnKiteezi landfill site is the main solid waste dumping site in Kampala City (Uganda). In this study, the generation of methane from waste at Kiteezi landfill was measured using laboratory-scale anaerobic digestion experiment and estimated using the Mass balance model. The samples were collected in the wet and dry seasons, with five replicates for each season which were processed for further experiments focused on moisture content analysis and anaerobic digestion. The moisture content analysis results showed a significant change (P < 0.05) between wet season and dry season. Also, the anaerobic digestion revealed that moisture content was a determining factor in gas generation. The average monthly methane production estimate from the mass balance model was 1.63 Gg methane/month and was comparable (within 14%) to the amount estimated by laboratory-scale anaerobic digestion experiment (1.43 Gg methane/month). It is a worthwhile undertaking to further investigate the potential of commercially producing methane from Kiteezi landfill as an alternative source of green and clean energy for urban masses.Item Estimation of Spatial and Temporal Water Requirements of Grain Amaranth Using Satellite, Local and Virtual Weather Stations Datasets in Uganda(International Journal of Agricultural and Biological Engineering, 2016) Kyagulanyi, Joseph; Kabenge, Isa; Banadda, Noble; Muyonga, John; Mulamba, Peter; Kiggundu, NicholasIn this study, an integrated approach incorporating Remote Sensing (RS), Geographical Information System (GIS), local meteorological weather stations’ data and NASA’s virtual meteorological stations’ data were used to quantify Grain Amaranth (GA) water requirements in Uganda. Penman-Monieth method within CropWAT8 model and Surface Energy Balance Algorithm for Land (SEBAL) Model was used to quantify the evapotranspiration. Normalized Difference Vegetation Index (NDVI), daily spatial distribution of Evapotranspiration (ET), Land Surface Temperature (LST) and surface albedo were extracted from satellite imagery. The ratio of effective rainfall (Pe) to Potential Evapotranspiration (PET) – (Pe/PET) and time series for NDVI were computed to determine the growth stage of GA in different areas. The GA water demand was the highest in Karamoja sub-region (467.5 mm/season) and the lowest in Tororo (174.1 mm/season). The growing season for GA in most areas of Uganda was from March to December. Estimation of evapotranspiration in Karamoja sub-region with SEBAL model corresponded to the NDVI extracted, especially for highly vegetated areas. CROPWAT indicated that if GA was planted during the late September and early October in Karamoja sub-region, despite the decreasing moisture levels, the crop could have sufficient water supply during emergence to maturity. The ability to utilize low available moisture levels makes GA a potential crop to bridge the gap (due to the elongated drought) for the food production cycle in Karamoja sub-region.Item Extraction, Quantification and Characterization of Oil From Pumpkin Seeds(International Journal of Agricultural and Biological Engineering, 2015) Kukeera, Tonny; Banadda, Noble; Tumutegyereize, Peter; Kiggundu, Nicholas; Asuman, RatibuA quantification and characterization study of oil from pumpkin seeds was carried out on three pumpkin varieties, namely, Japanese type of the Curcubita maxima species, Green Kabocha and butternut squash of the Cucurbita moschanta species. Oil extraction was done using the Soxhlet method with petroleum ether as the solvent. The physicochemical properties of acid value, iodine value, specific gravity and refractive index were determined. The results were analyzed statistically using one way ANOVA at a 5% level of significance. The mean values of oil content, acid value, iodine value, specific gravity and refractive index for Japanese type pumpkin were found to be 35.67%, 2.24 mg KOH/g, 26.45 mg I2/100 g, 0.9126 and 1.47, respectively. For Green Kabocha, the mean values of the above five properties were 30.12%, 3.35 mg KOH/g, 25.3 mg I2/100 g, 0.9126 and 1.469, respectively. For the Butternut squash type the mean values of the above five properties were 34.76%, 3.74 mg KOH/g, 26.61 mg I2, 0.9131 and 1.471, respectively. It can be noted that from the low acid values of the pumpkin oil, pumpkin oil can be identified as edible. Also the low iodine value indicated that the pumpkin oil was non-drying. In addition, the low iodine value also suggested that the oil contains few unsaturated bonds and therefore has low susceptibility to oxidative rancidity. With a comparison of extraction rates from other oil sources in Uganda such as cotton (15%-20%), soybeans (19%-21%), the obtained results in this study suggested that pumpkin seeds are a viable source of vegetable oils that can be utilized for commercial vegetable oil extraction in Uganda.Item FluNet: An AI-Enabled Influenza-Like Warning System(IEEE sensors journal, 2021) Ward, Ryan J.; Jjunju, Fred Paul Mark; Kabenge, Isa; Wanyenze, Rhoda; Griffith, Elias J.; Banadda, Noble; Taylor, Stephen; Marshall, AlanInfluenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding 153 million cases worldwide, there is a need for a low-cost and contactless surveillance system to detect symptomatic individuals. The objective of this study was to develop FluNet, a novel, proof-of-concept, low-cost and contactless device for the detection of high-risk individuals. The system conducts face detection in the LWIR with a precision rating of 0.98, a recall of 0.91, an F-score of 0.96, and a mean intersection over union of 0.74 while sequentially taking the temperature trend of faces with a thermal accuracy of ± 1 K. In parallel, determining if someone is coughing by using a custom lightweight deep convolutional neural network with a precision rating of 0.95, a recall of 0.92, an F-score of 0.94 and an AUC of 0.98. We concluded this study by testing the accuracy of the direction of arrival estimation for the cough detection revealing an error of ± 4.78 . If a subject is symptomatic, a photo is taken with a specified region of interest using a visible light camera. Two datasets have been constructed, one for face detection in the LWIR consisting of 250 images of 20 participants’ faces at various rotations and coverings, including face masks. The other for the real-time detection of coughs comprised of 40,482 cough / not cough sounds. These findings could be helpful for future low-cost edge computing applications for influenza-like monitoring.Item Harnessing of Banana Ripening Process for Banana Juice Extraction in Uganda(Afr. J. Food Sci. Technol, 2015) Omulo, Godfrey; Banadda, Noble; Kiggundu, NicholasBanana is a very important staple food crop in Uganda. It is grown in every part of the country with the largest production recorded in western and central regions. Uganda is ranked the second largest producer of banana after India in the world. Bananas produced in Uganda are largely consumed locally as matookewith small amounts being exported as green banana or ripened to make juice, wine, beer or chips. There are variousmanual techniques of making banana juices in Uganda ranging from hands, foot and small scale mechanical machines which are not economical and hygienic. However, banana ripening poses a very big challenge to farmers and small scale processors. This has resulted in large quantities of banana loss, reduced shelf life and low economic returns to small scale farmers. In this review, different methods of natural, controlled banana ripening and ripening delay techniques are outlined. Controlled ripening of bananas is a key facet to good economic return in banana production as well as a stable and feasible strategy to ensure constant supply of ripe banana for banana juice processing.
- «
- 1 (current)
- 2
- 3
- »