Browsing by Author "Baguma, J.K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of self-pollination with heat-treated pollen on parthenocarpy and homozygosity in cassava(African Crop Science Journal, 2020) Buttibwa, M.; Kawuki, R.S.; Baguma, J.K.; Nalela, P.; Eyokia, M.; Oshaba, B.; Ceballos, H.; Lentini, Z.; Baguma, Y.; Tugume, A.K.Cassava’s (Manihot esculenta Crantz) high heterozygosity complicates its genetic improvement via selective breeding. Double haploid (DH) technology can be used to improve the crop’s heterozygosity, thereby improving the capacity for genetic improvement. The objective of this study was to evaluate the effect of self-pollination using heated pollen on pollen tube penetration, fruit set, seed and haploid embryo development in cassava genotypes for the production of haploid cassava. Pollen from two cassava genotypes, NASE3 and NASE14, was heated at 40, 50 and 60 oC for 0.5, 1.0 and 2.0 hr each. The heated pollen was used in six rounds of self-pollinations. Pollen tube penetration was monitored by fluorescent microscopy, followed by early embryo rescue and ovule culture. Ploidy and zygosity were assessed using flow cytometry and single-nucleotide polymorphism analysis, respectively. Pollen germinated on the stigma, grew within the style through the nucellar beak, but did not reach the embryo sac, thus achieving no fertilisation in all the 5756 self-pollinated flowers. There was a reduction in pollen germination (in vitro and in vivo), pollen tube penetration and fruit set with increasing temperature. Heat-treated pollen stimulated division of the egg cell and induced development of parthenocarpic fruits. Up to 6 embryoids per ovule were observed and all regenerated plantlets were diploid, with up to 93.0% increased homozygosity. For the first time, plant regeneration from ovules, pollinated with fresh pollen at 14 days after pollination, was achieved indicating improved speed in plant regeneration. The data generated are important for the development of protocols for cassava DH plant production.Item Fruit Set and Plant Regeneration in Cassava Following Inter specific Pollination with Castor Bean(African Crop Science Journal, 2019) Baguma, J.K.; Mukasa, S.B.; Kawuki, R.; Tugume, A.K.; Buttibwa, M.; Nalela, P.; Eyokia, M.; Oshaba, B.; Ceballos, H.; Lentini, Z.; Baguma, Y.The increasing demand for cassava (Manihot esculenta Crantz) for food and non-food uses in the tropics necessitates that its breeding for increased root productivity be made faster. The characteristic long breeding cycle and heterozygous nature of this crop, pose a major obstacle to its rapid genetic improvement. This study aimed at inter-pollinating cassava with castor bean (Ricinus communis), with a purpose of inducing and regenerating cassava doubled haploids (DHs). A total of 3,349 flowers from twelve elite cassava varieties were inter-pollinated with caster bean. A total of 803 fruits were harvested for early embryo rescue and/or ovule culture. Of these, three were dissected to obtain seven unique embryos, while 800 were dissected to obtain 1312 young ovules, all of which were cultured in vitro. Overall, 82 (6.25%) of the cultured ovules formed callus that originated from the embryosac region, which is haploid. Four out of seven rescued embryos (57.1%) regenerated into plantlets. Ploidy analyses of 24 samples using flow cytometry revealed that 23 of the analysed samples were diploid. However, one callus sample was anueploid. Only one sample had an exceptionally high level of homozygosity ( 84.2%). These findings lay a foundation for future research aimed at induction of haploids in cassava.