Browsing by Author "Atimnedi, Patrick"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats(PLoS pathogens, 2009) Towner, Jonathan S.; Amman, Brian R.; Sealy, Tara K.; Carroll, Serena A. Reeder; Comer, James A.; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D.; Balinandi, Stephen; Khristova, Marina L.; Formenty, Pierre B. H.; Albarino, Cesar G.; Miller, David M.; Reed, Zachary D.; Kayiwa, John T.; Mills, James N.; Cannon, Deborah L.; Greer, Patricia W.; Byaruhanga, Emmanuel; Farnon, Eileen C.; Atimnedi, Patrick; Okware, Samuel; Mbidde, Edward Katongole; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Ksiazek, Thomas G.; Nichol, Stuart T.; Rollin, Pierre E.In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.Item The antigen recognition portion of African buffalo class I MHC is highly polymorphic, consistent with a complex pathogen challenge environment, and the 3’ region suggests distinct haplotype configuration(Immunogenetics, 2022) Obara, Isaiah; Atimnedi, Patrick; Mijele, Domnic; Nanteza, Anne; Elati, Khawla; Bishop, RichardAfrican buffalo (Syncerus caffer) have been distinct from the Auroch lineage leading to domestic cattle for 5 million years, and are reservoirs of multiple pathogens, that affect introduced domestic cattle. To date, there has been no analysis of the class I MHC locus in African buffalo. We present the first data on African buffalo class I MHC, which demonstrates that gene and predicted protein coding sequences are approximately 86–87% similar to that of African domestic cattle in the peptide binding region. The study also shows concordance in the distribution of codons with elevated posterior probabilities of positive selection in the buffalo class I MHC and known antigen binding sites in cattle. Overall, the diversity in buffalo class I sequences appears greater than that in cattle, perhaps related to a more complex pathogen challenge environment in Africa. However, application of NetMHCpan suggested broad clustering of peptide binding specificities between buffalo and cattle. Furthermore, in the case of at least 20 alleles, critical peptide-binding residues appear to be conserved with those of cattle, including at secondary anchor residues. Alleles with six different length transmembrane regions were detected. This preliminary analysis suggests that like cattle, but unlike most other mammals, African buffalo appears to exhibit configuration (haplotype) variation in which the loci are expressed in distinct combinations.