Browsing by Author "Ashaba Katabazi, Fred"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Biobanking: Strengthening Uganda’s Rapid Response to COVID-19 and Other Epidemics(Biopreservation and Biobanking, 2021) Kamulegeya, Rogers; Kateete, David Patrick; Bagaya, Bernard S.; Nasinghe, Emmanuel; Muttamba, Winters; Nsubuga, Gideon; Kigozi, Edgar; Ashaba Katabazi, Fred; Nakwagala, Fred; Kalungi, Sam; Byamugisha, Josaphat; Worodria, William; Magala, Rose; Kirenga, Bruce; Joloba, Moses L.SARS-CoV-2 is a fatal disease of global public health concern. Measures to reduce its spread critically depend on timely and accurate diagnosis of virus-infected individuals. Biobanks can have a pivotal role in elucidating disease etiology, translation, and advancing public health. In this article, we show how a biobank has been a critical resource in the rapid response to coronavirus disease of 2019 (COVID-19) in Uganda. Materials and Methods: The Integrated Biorepository of H3Africa Uganda established a COVID-19 biobank. Standard Operating Procedures for sample and data collection, sample processing, and storage were developed. An e-questionnaire data tool was used to collect sociodemographic factors. Samples were collected at 7-day intervals from patients, analyzed for key parameters, processed, annotated, characterized, and stored at appropriate temperatures. Results: Stored samples have been used in validation of 17 diagnostic kits, the Cepheid Xpert Xpress SARSCoV- 2 assay, as well as a sample pooling technique for mass screening and polymerase chain reaction assay validation. Kits that passed validation were deployed for mass screening boosting early detection, isolation, and treatment of COVID-19 cases. Also, 10 applications from researchers and biotech companies have been received and approved and 4 grants have been awarded Conclusion: The CoV-Bank has proven to be an invaluable resource in the fight against the COVID-19 pandemic in Uganda, as samples have been resources in the validation and development of COVID-19 diagnostic tools, which are important in tracing and isolation of infected cases to confront, delay, and stop the spread of the SARS-CoV-2 virus.Item Can malaria rapid diagnostic tests by drug sellers under field conditions classify children 5 years old or less with or without Plasmodium falciparum malaria? Comparison with nested PCR analysis(Malaria journal, 2018) Kitutu, Freddy Eric; Wamani, Henry; Selling, Katarina Ekholm; Ashaba Katabazi, Fred; Bisaso Kuteesa, Ronald; Peterson, StefanMalaria rapid diagnostic tests (RDTs) available as dipsticks or strips, are simple to perform, easily interpretable and do not require electricity nor infrastructural investment. Correct interpretation of and compliance with the RDT results is a challenge to drug sellers. Thus, drug seller interpretation of RDT strips was compared with laboratory scientist re-reading, and PCR analysis of Plasmodium DNA extracted from RDT nitrocellulose strips and fast transient analysis (FTA) cards. Malaria RDT cassettes were also assessed as a potential source of Plasmodium DNA. Methods: A total of 212 children aged between 2 and 60 months, 199 of whom had complete records at two study drug shops in south western Uganda participated in the study. Duplicate 5 μL samples of capillary blood were picked from the 212 children, dispensed onto the sample well of the CareStart™ Pf-HRP2 RDT cassette and a FTA, Whatman™ 3MM filter paper in parallel. The RDT strip was interpreted by the drug seller within 15–20 min, visually re-read centrally by laboratory scientist and from it; Plasmodium DNA was recovered and detected by PCR, and compared with FTA recovered P. falciparum DNA PCR detection. Results: Malaria positive samples were 62/199 (31.2%, 95% CI 24.9, 38.3) by drug seller interpretation of RDT strip, 59/212 (27.8%, 95% CI 22.2, 34.3) by laboratory scientist, 55/212 (25.9%, 95% CI 20.0, 32.6) by RDT nitrocellulose strip PCR and 64/212 (30.2%, 95% CI 24.4, 37.7). The overall agreement between the drug seller interpretation and laboratory scientist re-reading of the RDT strip was 93.0% with kappa value of 0.84 (95% CI 0.75, 0.92). The drug seller compliance with the reported RDT results was 92.5%. The performance of the three diagnostic strategies compared with FTA-PCR as the gold standard had sensitivity between 76.6 and 86.9%, specificity above 90%, positive predictive values ranging from 79.0 to 89.8% and negative predictive values above 90%. Conclusion: Drug sellers can use RDTs in field conditions and achieve acceptable accuracy for malaria diagnosis, and they comply with the RDT results. Plasmodium DNA can be recovered from RDT nitrocellulose strips even in the context of drug shops. Future malaria surveillance and diagnostic quality control studies with RDT cassette as a source of Plasmodium DNA are recommended.Item Disproportionate Distribution of HBV Genotypes A and D and the Recombinant Genotype D/E in the High and Low HBV Endemic Regions of Uganda: A Wake-Up Call for Regional Specific HBV Management(International journal of hepatology, 2022) Mukasa Kafeero, Hussein; Ndagire, Dorothy; Ocama, Ponsiano; Drago Kato, Charles; Wampande, Eddie; Kajumbula, Henry; Kateete, David; Walusansa, Abdul; Kudamba, Ali; Edgar, Kigozi; Ashaba Katabazi, Fred; Namaganda, Maria Magdalene; Ssenku, Jamilu E.; Sendagire, HakimHepatitis B virus (HBV) is the leading cause of liver-related diseases. In Uganda, there is a regional disparity in the HBV burden. Our study was aimed at establishing the circulating genotypes in a low and a high endemic region to give plausible explanations for the differences in regional burden and guide the future management of the disease. Methods. A total of 200 HBsAg-seropositive subjects were recruited into the study by convenience sampling. The HBsAg Rapid Test Strip (Healgen Scientific Limited Liability Company, Houston, TX77047- USA) was used to screen for HBsAg while the Roche machine (Roche, Basel Switzerland/Abbot Technologies (USA)) was used to determine the viral load. The Chemistry Analyzer B120 (Mindray, China) was used for chemistry analysis. For HBV genotyping, total DNA was extracted from whole blood using the QIAamp® DNA extraction kit. Nested PCR amplification was performed using Platinum Taq DNA Polymerase (Invitrogen Corporation, USA) to amplify the 400 bp HBV polymerase gene. Purification of nested PCR products was performed using Purelink PCR product purification kit (Life Technologies, USA). Automated DNA sequencing was performed using BigDye Terminator v3.1 Cycle Sequencing Kit on 3130 Genetic Analyzer (Applied Biosystems, USA). The NCBI HBV genotyping tool (https://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi) was used for determination of genotype for each HBV sequence. Pearson’s chi-square, multinomial logistic regression, and Mann–Whitney U tests were used for the analysis. All the analyses were done using SPSS version 26.0 and MedCalc software version 19.1.3 at 95% CI. A p < 0:05 was considered statistically significant. Results. Majority of our study subjects were female (64.5%), youth (51.0%), and married (62.0%). Overall, genotype A was the most prevalent (46%). Genotype D and the recombinant genotype D/E were proportionately more distributed in the high endemic (38.2%) and low endemic (36.5%) regions, respectively. Genotype D was significantly more prevalent in the high endemic region and among the elderly (p < 0:05). Genotype D was significantly associated with elevated viral load and direct bilirubin (p < 0:05). The recombinant genotype D/E was significantly associated with elevated viral load (p < 0:05). Similarly, genotype A was significantly associated with elevated AST and GGT, lowered viral load, and normal direct bilirubin levels (p < 0:05). Conclusion. There is disproportionate distribution of genotypes A and D and the recombinant genotype D/E in the low and high endemic regions of Uganda. This probably could explain the differences in endemicity of HBV in our country signifying the need for regional specific HBV management and control strategies.Item Exome Sequencing Reveals a Putative Role for HLA-C*03:02 in Control of HIV-1 in African Pediatric Populations(Frontiers in Genetics, 2021) Kyobe, Samuel; Mwesigwa, Savannah; Kisitu, Grace P.; Farirai, John; Katagirya, Eric; Mirembe, Angella N.; Ketumile, Lesego; Wayengera, Misaki; Ashaba Katabazi, Fred; Kigozi, Edgar; Wampande, Edward M.; Retshabile, Gaone; Mlotshwa, Busisiwe C.; Williams, Lesedi; Morapedi, Koketso; Kasvosve, Ishmael; Kyosiimire-Lugemwa, Jacqueline; Nsangi, Betty; Tsimako-Johnstone, Masego; Brown, Chester W.; Joloba, Moses; Anabwani, Gabriel; Bhekumusa, Lukhele; Mpoloka, Sununguko W.; Mardon, Graeme; Matshaba, Mogomotsi; Kekitiinwa, Adeodata; Hanchard, Neil A.Human leucocyte antigen (HLA) class I molecules present endogenously processed antigens to T-cells and have been linked to differences in HIV-1 disease progression. HLA allelotypes show considerable geographical and inter-individual variation, as does the rate of progression of HIV-1 disease, with long-term non-progression (LTNP) of disease having most evidence of an underlying genetic contribution. However, most genetic analyses of LTNP have occurred in adults of European ancestry, limiting the potential transferability of observed associations to diverse populations who carry the burden of disease. This is particularly true of HIV-1 infected children. Here, using exome sequencing (ES) to infer HLA allelotypes, we determine associations with HIV- 1 LTNP in two diverse African pediatric populations. We performed a case-control association study of 394 LTNPs and 420 rapid progressors retrospectively identified from electronic medical records of pediatric HIV-1 populations in Uganda and Botswana. We utilized high-depth ES to perform high-resolution HLA allelotyping and assessed evidence of association between HLA class I alleles and LTNP. Sixteen HLA alleles and haplotypes had significantly different frequencies between Uganda and Botswana, with allelic differences being more prominent in HLA-A compared to HLA-B and C allelotypes. Three HLA allelotypes showed association with LTNP, including a novel association in HLA-C (HLA-B 57:03, aOR 3.21, Pc = 0.0259; B 58:01, aOR 1.89, Pc = 0.033; C 03:02, aOR 4.74, Pc = 0.033). Together, these alleles convey an estimated population attributable risk (PAR) of non-progression of 16.5%. We also observed novel haplotype associations with HLA-B 57:03-C 07:01 (aOR 5.40, Pc = 0.025) and HLA-B 58:01- C 03:02 (aOR 4.88, Pc = 0.011) with a PAR of 9.8%, as well as a previously unreported independent additive effect and heterozygote advantage of HLA-C 03:02 with B 58:01 (aOR 4.15, Pc = 0.005) that appears to limit disease progression, despite weak LD (r2 = 0.18) between these alleles. These associations remained irrespective of gender or country. In one of the largest studies of HIV in Africa, we find evidence of a protective effect of canonical HLA-B alleles and a novel HLA-C association that appears to augment existing HIV-1 control alleles in pediatric populations. Our findings outline the value of using multi-ethnic populations in genetic studies and offer a novel HIV-1 association of relevance to ongoing vaccine studies.Item Genetic Diversity and Acquired Drug Resistance Mutations Detected by Deep Sequencing in Virologic Failures among Antiretroviral Treatment Experienced Human Immunodeficiency Virus-1 Patients in a Pastoralist Region of Ethiopia(Infection and Drug Resistance, 2021) Tachbele, Erdaw; Kyobe, Samuel; Ashaba Katabazi, Fred; Kigozi, Edgar; Mwesigwa, Savannah; Joloba, Moses; Messele, Alebachew; Amogne, Wondwossen; Legesse, Mengistu; Pieper, Rembert; Ameni, GobenaThis study was conducted to investigate the drug resistance mutations and genetic diversity of HIV-1 in ART experienced patients in South Omo, Ethiopia. Patients and Methods: A cross-sectional study conducted on 253 adult patients attending ART clinics for ≥6 months in South Omo. Samples with VL ≥1000 copies/ mL were considered as virological failures (VF) and their reverse transcriptase gene codons 90–234 were sequenced using Illumina MiSeq. MinVar was used for the identification of the subtypes and drug resistance mutations. Phylogenetic tree was constructed by neighbor-joining method using the maximum likelihood model. Results: The median duration of ART was 51 months and 18.6% (47/253) of the patients exhibited VF. Of 47 viraemic patients, the genome of 41 were sequenced and subtype C was dominant (87.8%) followed by recombinant subtype BC (4.9%), M-09- CPX (4.9) and BF1 (2.4%). Of 41 genotyped subjects, 85.4% (35/41) had at least one ADR mutation. Eighty-one percent (33/41) of viraemic patients harbored NRTI resistance mutations, and 48.8% (20/41) were positive for NNRTI resistance mutations, with 43.9% dual resistance mutations. Among NRTI resistance mutations, M184V (73.2%), K219Q (63.4%) and T215 (56.1%) complex were the most mutated positions, while the most common NNRTI resistance mutations were K103N (24.4%), K101E, P225H and V108I 7.5% each. Active tuberculosis (aOR=13, 95% CI= 3.46–29.69), immunological failure (aOR=3.61, 95% CI=1.26–10.39), opportunistic infections (aOR=8.39, 95% CI= 1.75–40.19), and poor adherence were significantly associated with virological failure, while rural residence (aOR 2.37; 95% CI: 1.62–9.10, P= 0.05), immunological failures (aOR 2.37; 95% CI: 1.62–9.10, P= 0.05) and high viral load (aOR 16; 95% CI: 5.35 51.59, P <0.001) were predictors of ADR mutation among the ART experienced and viraemic study subjects. Conclusion: The study revealed considerable prevalence of VF and ADR mutation with the associated risk indicators. Regular virological monitoring and drug resistance genotyping methods should be implemented for better ART treatment outcomes of the nation.