Browsing by Author "Amudhavel, J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Predictive Performance Analysis of Vitamin D Deficiency Severity Using Machine Learning Methods(IEEE Access, 2020) Sambasivam, G.; Amudhavel, J.; Sathya, G.Vitamin D Deficiency (VDD) is one of the most significant global health problem and there is a strong demand for the prediction of its severity using non-invasive methods. The primary data containing serum Vitamin D levels were collected from a total of 3044 college students between 18-21 years of age. The independent parameters like age, sex, weight, height, body mass index (BMI), waist circumference, body fat, bone mass, exercise, sunlight exposure, and milk consumption were used for prediction of VDD. The study aims to compare and evaluate different machine learning models in the prediction of severity in VDD. The objectives of our approach are to apply various powerful machine learning algorithms in prediction and evaluate the results with different performance measures like Precision, Recall, F1-measure, Accuracy, and Area under the curve of receiver operating characteristic (ROC). The McNemar’s test was conducted to validate the empirical results which is a statistical test. The final objective is to identify the best machine learning classifier in the prediction of the severity of VDD. The most popular and powerful machine learning classifiers like K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), AdaBoost (AB), Bagging Classifier (BC), ExtraTrees (ET), Stochastic Gradient Descent (SGD), Gradient Boosting (GB), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) were implemented to predict the severity of VDD. The final experimentation results showed that the Random Forest Classifier achieves better accuracy of 96 % and outperforms well on training and testing Vitamin D dataset. The McNemar’s statistical test results support that the RF classifier outperforms than the other classifiers.Item An QoS based multifaceted matchmaking framework for web services discovery(Future Computing and Informatics Journal, 2018) Sambasivam, G.; Amudhavel, J.; Vengattaraman, T.; Dhavachelvan, P.With the increasing demand, the web service has been the prominent technology for providing good solutions to the interoperability of different kind of systems. Web service supports mainly interoperability properties as it is the major usage of this promising technology. Although several technologies had been evolved before web service technology and this has more advantage of other technologies. This paper has concentrated mainly on the Multifaceted Matchmaking framework for Web Services Discovery using Quality of Services parameters. Traditionally web services have been discovered only with the functional properties like input, output, precondition and effect. Nowadays there is an increase in number of service providers leads to increase in the web services with same functionality. So user need to discover the best services so Quality of Service factors has been evolved. The traditional discovery supports only few quality parameters and so the discovery is easy in retrieval of services. As the parameter increases the matchmaking will be complex during service discovery. So in this proposed work, we have identified 21 QoS parameters which are suitable for service discovery. The information retrieval techniques are used to evaluate the results and results show that the proposed framework is better.