Browsing by Author "Alibu, Vincent P."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Anti-Paraflagellar Rodc Antibodies Inhibit the In-Vitro Growth of Trypanosoma Brucei Brucei(American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 2018) Mukisa, Ambrose; Aguttu, Claire; Lubega, George W.; Kyambadde, Joseph; Alibu, Vincent P.; Vuzi, Peter C.Paraflagellar rod (PFR), a conserved structure expressed in all lifecycle stages of the order kinetoplasida except in the amastigotes is vital for the parasites survival. In T.b.brucei, the PFR protein has two major components, PFRc and PFRa with molecular mass 73kDa and 68kDa respectively. Experimental evidences implicate the PFR protein as a highly immunogenic and protective antigen. However, its immunogenic properties underlying its suitability as vaccine candidate has not been adequately investigated in-vitro. This study aimed to demonstrate the growth inhibitory potential of PFR protein against T.b.brucei parasites in–vitro. Antibodies against a recombinant form of the PFRc protein were produced and used to generate immune response. A deoxyribonucleotide (DNA) segment of approximate 672bp encoding the PFRc protein component was amplified using polymerase chain reaction (PCR), cloned and expressed in E.coli (BL21) cells. A 200 μg portion of the purified PFRc protein mixed with 100μl Freund's complete adjuvant (FCA) was used to immunize rabbits. An antibody titre of 2.5 x 104 reciprocal dilutions was obtained following three immunisation boosts, spaced two weeks apart. Western blot analysis showed that rabbit anti-PFRc antibodies recognised specifically a 25kDa protein corresponding to the estimated size of the expressed PFRc protein. 25% of purified anti-rabbit IgG antibodies were able to inhibit ~70% T.b.brucei parasite in vitroItem Community engagement strategies for genomic studies in Africa: a review of the literature(BMC medical ethics, 2015) Tindana, Paulina; de Vries, Jantina; Campbell, Megan; Littler, Katherine; Seeley, Janet; Marshall, Patricia; Troyer, Jennifer; Ogundipe, Morisola; Alibu, Vincent P.; Yakubu, Aminu; Parker, MichaelCommunity engagement has been recognised as an important aspect of the ethical conduct of biomedical research, especially when research is focused on ethnically or culturally distinct populations. While this is a generally accepted tenet of biomedical research, it is unclear what components are necessary for effective community engagement, particularly in the context of genomic research in Africa. Methods: We conducted a review of the published literature to identify the community engagement strategies that can support the successful implementation of genomic studies in Africa. Our search strategy involved using online databases, Pubmed (National Library of Medicine), Medline and Google scholar. Search terms included a combination of the following: community engagement, community advisory boards, community consultation, community participation, effectiveness, genetic and genomic research, Africa, developing countries. Results: A total of 44 articles and 1 thesis were retrieved of which 38 met the selection criteria. Of these, 21 were primary studies on community engagement, while the rest were secondary reports on community engagement efforts in biomedical research studies. 34 related to biomedical research generally, while 4 were specific to genetic and genomic research in Africa. Conclusion: We concluded that there were several community engagement strategies that could support genomic studies in Africa. While many of the strategies could support the early stages of a research project such as the recruitment of research participants, further research is needed to identify effective strategies to engage research participants and their communities beyond the participant recruitment stage. Research is also needed to address how the views of local communities should be incorporated into future uses of human biological samples. Finally, studies evaluating the impact of CE on genetic research are lacking. Systematic evaluation of CE strategies is essential to determine the most effective models of CE for genetic and genomic research conducted in African settings.Item A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei(Molecular and biochemical parasitology, 2005) Alibu, Vincent P.; Storm, Lilian; Haile, Simon; Clayton, Christine; Horn, DavidThe most rapid method for the generation of conditional mutants in Trypanosoma brucei is the use of RNA interference. A single copy of the target sequence is cloned between two opposing T7 promoters bearing tet operators, and the resulting plasmid is integrated into the genome of cells expressing both the tet repressor and T7 RNA polymerase. Upon addition of tetracycline, double-stranded RNA is synthesised from the two T7 promoters. Unfortunately, repression of T7 promoter activity may sometimes be insufficient to prevent expression of toxicamounts of double-stranded RNA. We describe here cell lines in which the expression of T7 polymerase is under tetracycline control, and show that regulation of polymerase expression can modulate transcription from a constitutive T7 promoter. In addition we describe a construct containing two copies of the tn10 Tet repressor for easy creation of repressor-expressing trypanosomes, and an RNA interference vector which allows “TA” cloning of unmodified PCR products and blue/white selection.Item Interleukin (IL)-6 and IL-10 Are Up Regulated in Late Stage Trypanosoma brucei rhodesiense Sleeping Sickness(PLoS Neglected Tropical Diseases, 2015) Kato, Charles D.; Alibu, Vincent P.; Nanteza, Ann; Mugasa, Claire M.; Matovu, EnockSleeping sickness due to Trypanosoma brucei rhodesiense has a wide spectrum of clinical presentations coupled with differences in disease progression and severity across East and Southern Africa. The disease progresses from an early (hemo-lymphatic) stage to the late (meningoencephalitic) stage characterized by presence of parasites in the central nervous system. We hypothesized that disease progression and severity of the neurological response is modulated by cytokines.Item No evidence for association between APOL1 kidney disease risk alleles and Human African Trypanosomiasis in two Ugandan populations(PLoS neglected tropical diseases, 2018) Magambo, Phillip K.; Noyes, Harry; Mulindwa, Julius; Enyaru, John; Alibu, Vincent P.; Sidibe, Issa; Mumba Ngoyi, Dieuodonne; Hertz-Fowler, Christiane; MacLeod, Annette; Tastan Bishop, Ozlem; Matovu, EnockHuman African trypanosomiasis (HAT) manifests as an acute form caused by Trypanosoma brucei rhodesiense (Tbr) and a chronic form caused by Trypanosoma brucei gambiense (Tbg). Previous studies have suggested a host genetic role in infection outcomes, particularly for APOL1. We have undertaken candidate gene association studies (CGAS) in a Ugandan Tbr and a Tbg HAT endemic area, to determine whether polymorphisms in IL10, IL8, IL4, HLAG, TNFA, TNX4LB, IL6, IFNG, MIF, APOL1, HLAA, IL1B, IL4R, IL12B, IL12R, HP, HPR, and CFH have a role in HAT. Methodology and results We included 238 and 202 participants from the Busoga Tbr and Northwest Uganda Tbg endemic areas respectively. Single Nucleotide Polymorphism (SNP) genotype data were analysed in the CGAS. The study was powered to find odds ratios > 2 but association testing of the SNPs with HAT yielded no positive associations i.e. none significant after correction for multiple testing. However there was strong evidence for no association with Tbr HAT and APOL1 G2 of the size previously reported in the Kabermaido district of Uganda. Conclusions/Significance A recent study in the Soroti and Kaberamaido focus in Central Uganda found that the APOL1 G2 allele was strongly associated with protection against Tbr HAT (odds ratio = 0.2, 95% CI: 0.07 to 0.48, p = 0.0001). However, in our study no effect of G2 on Tbr HAT wasItem Phylogenetic Analysis of Rubella Viruses Identified in Uganda, 2003–2012(Journal of medical virology, 2014) Namuwulya, Prossy; Abernathy, Emily; Bukenya, Henry; Bwogi, Josephine; Tushabe, Phionah; Birungi, Molly; Seguya, Ronald; Kabaliisa, Theopista; Alibu, Vincent P.; Kayondo, Jonathan K.; Rivailler, Pierre; Icenogle, Joseph; Bakamutumaho, BarnabasMolecular data on rubella viruses are limited in Uganda despite the importance of congenital rubella syndrome (CRS). Routine rubella vaccination, while not administered currently in Uganda, is expected to begin by 2015. The World Health Organization recommends that countries without rubella vaccination programs assess the burden of rubella and CRS before starting a routine vaccination program. Uganda is already involved in integrated case-based surveillance, including laboratory testing to confirm measles and rubella, but molecular epidemiologic aspects of rubella circulation have so far not been documented in Uganda. Twenty throat swab or oral fluid samples collected from 12 districts during routine rash and fever surveillance between 2003 and 2012 were identified as rubella virus RNA positive and PCR products encompassing the region used for genotyping were sequenced. Phylogenetic analysis of the 20 sequences identified 19 genotype 1G viruses and 1 genotype 1E virus. Genotype-specific trees showed that the Uganda viruses belonged to specific clusters for both genotypes 1G and 1E and grouped with similar sequences from neighboring countries. Genotype 1G was predominant in Uganda. More epidemiological and molecular epidemiological data are required to determine if genotype 1E is also endemic in Uganda. The information obtained in this study will assist the immunization program in monitoring changes in circulating genotypes.Item Plasma cytokine profiles associated with rhodesiense sleeping sickness and falciparum malaria co‑infection in North Eastern Uganda(Allergy, Asthma & Clinical Immunology, 2019) Nsubuga, Julius; Kato, Charles D.; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P.Immunological Human African Trypanosomiasis (HAT) studies often exclude malaria, although both infections overlap in specific endemic areas. During this co-infection, it is not known whether this parasitic interaction induces synergistic or antagonistic cytokine response among humans. This study determined prevalence of Plasmodium falciparum malaria among Trypanosoma brucei rhodesiense HAT and plasma cytokine profile levels associated with HAT and/or malaria infections. Methods: Participants were recruited at Lwala hospital in north eastern Uganda: healthy controls (30), malaria (28), HAT (17), HAT and malaria (15) diagnosed by microscopy and PCR was carried out for parasite species identification. Plasma cytokine levels of Interferon-gamma (IFN-γ), Tumour Necrosis Factor-alpha (TNF-α), Interleukin (IL)-6, IL-10 and Transforming Growth Factor-beta (TGF-β) were measured by sandwich Enzyme-Linked Immuno Sorbent Assay and data statistically analysed using Graphpad Prism 6.0. Results: The prevalence of P. falciparum malaria among T. rhodesiense HAT cases was high (46.8%). Malaria and/or HAT cases presented significant higher plasma cytokine levels of IFN-γ, TNF-α, IL-6, IL-10 and TGF-β than healthy controls (P < 0.05). Levels of IFN-γ, IL-6 and IL-10 were significantly elevated in HAT over malaria (P < 0.05) but no significant difference in TNF-α and TGF-β between HAT and malaria (P > 0.05). Co-infection expressed significantly higher plasma IFN-γ, IL-6, and IL-10 levels than malaria (P < 0.05) but no significant difference with HAT mono-infection (P > 0.05). The TNF-α level was significantly elevated in co-infection over HAT or malaria mono-infections (P < 0.05) unlike TGF-β level. Significant positive correlations were identified between IFN-γ verses TNF-α and IL-6 verses IL-10 in co-infection (Spearman’s P < 0.05). Conclusions: The T. b. rhodesiense significantly induced the cytokine response more than P. falciparum infections. Co-infection led to synergistic stimulation of pro-inflammatory (IFN-γ, TNF-α), and anti-inflammatory (IL-6, and IL-10) cytokine responses relative to malaria mono-infection. Level of TNF-α partially indicates the effect induced by T. b. rhodesiense and P. falciparum mono-infections or a synergistic interaction of co-infections which may have adverse effects on pathogenesis, prognosis and resolution of the infections. Trial registration VCD-IRC/021, 26/08/2011; HS 1089, 16/01/2012Item Plasma Neuron-Specifc Enolase is not a reliable biomarker for staging Trypanosoma brucei rhodesiense sleeping sickness patients(BMC Research Notes, 2022) Kato, Charles D.; Twesigye, Dorothy; Alibu, Vincent P.; Nanteza, Ann; Nsubuga, Julius; Mugasa, Claire M.; Matovu, EnockCurrently, the only available staging criterion for T. b. rhodesiense requires a lumber puncture to collect and later examine cerebrospinal fluid (CSF). This study examined the potential of plasma Neuron-Specific Enolase (NSE) in discriminating between early and late-stage patients. When median NSE levels were compared between early and late-stage patients, results showed a significant (P < 0.02) upregulation among late-stage patients (599.8 ng/mL). No significant differences (P > 0.9) in NSE levels were observed between early-stage patients (300 ng/mL) and controls (454 ng/mL). We used Receiver Operator Characteristic (ROC) curves to explore the likelihood of using plasma NSE as a potential stage biomarker in discriminating between early and late-stage HAT patients. Our results showed that NSE demonstrated an area under the curve (AUC) of 0.702 (95% CI 0.583–0.830). A high staging accuracy for NSE was obtained by using a cutoff of > 346.5 ng/mL with a sensitivity of 68.6% (95% CI 55–79.7%) and a specificity of 93.3% (95% CI 70.2–99.7%). Although our results demonstrate that plasma NSE is upregulated in T. b. rhodesiense sleeping sickness patients, its value in discriminating between late and early-stage patients is limited. However, future studies could consider improving its specificity by combining it with other identified plasma biomarkers.Item Population genetic structure and temporal stability among Trypanosoma brucei rhodesiense isolates in Uganda(Parasites & Vectors, 2016) Kato, Charles D.; Alibu, Vincent P.; Nanteza, Ann; Mugasa, Claire M.; Matovu, EnockThe population structure and role of genetic exchange in African trypanosomes have been previously analyzed albeit with contradictory findings. To further investigate the role of genetic polymorphism on the population genetic structure of Trypanosoma b. rhodesiense, we hypothesized that parasite genotypes are clonal and stable over time. We have undertaken a microsatellite marker analysis of T. b. rhodesiense isolates in a relatively new active HAT focus in Uganda (Kaberamaido-Dokolo-Amolatar) over a six-year period (2006–2012). We amplified six microsatellite markers by PCR directly from blood spotted FTA cards following whole genome amplification. The majority of loci demonstrated an excess of heterozygosity (Ho > He, FIS < 0). We identified 26 unique genotypes among the 57 isolates, accounting for 45.6 % genotypic polymorphism. The presence of a high proportion of samples with repeated genotypes (54.4 %, 31/57), disagreement with Hardy-Weinberg equilibrium, and significant linkage disequilibrium between loci pairs, provide evidence that T. b. rhodesiense isolates from this focus are clonal. Our results show low values of FST’ (0–0.115) indicating negligible genetic differentiation across temporal isolates. Furthermore, predominant genotypes isolated in 2006 were still detectable in 2012. Our findings confirm the notion that endemicity is maintained by stable genotypes rather than an influx of new genotypes. Our results have considerable importance in understanding and tracking the spread of sleeping sickness with significant implication to disease control.Item Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda(BMC Research Notes, 2017) Kato, Charles D.; Mugasa, Claire M.; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P.Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.Item The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness(Allergy, Asthma & Clinical Immunology, 2016) Kato, Charles D.; Matovu, Enock; Mugasa, Claire. M.; Nanteza, Ann; Alibu, Vincent P.Human African trypanosomiasis due to Trypanosoma brucei rhodesiense is invariably fatal if untreated with up to 12.3 million people at a risk of developing the disease in Sub-Saharan Africa. The disease is characterized by a wide spectrum of clinical presentation coupled with differences in disease progression and severity. While the factors determining this varied response have not been clearly characterized, inflammatory cytokines have been partially implicated as key players. In this review, we consolidate available literature on the role of specific cytokines in the pathogenesis of T. b. rhodesiense sleeping sickness and further discuss their potential as stage biomarkers. Such information would guide upcoming research on the immunology of sleeping sickness and further assist in the selection and evaluation of cytokines as disease stage or diagnostic biomarkers.