Browsing by Author "Akampumuza, Obed"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 3D structure design and simulation for efficient particles capture: The influence of nanofiber diameter and distribution(Materials Today Communications, 2020) Wu, Jiajun; Akampumuza, Obed; Liu, Penghong; Qin, XiaohongSoftware simulation is a convenient and efficient way to design and check different air filter structures with high efficiency and low pressure drop. In this work, nanofiber filters of different diameters ranging from 100 to 900 nm were designed to check their influence on filtration efficiency, pressure drop and quality factor (QF). Slip-flow effect of air molecules was considered on the surface of single fiber. Then, filters with different diameter distributions were constructed to study the filtration efficiency discrepancy when the filter thickness and porosity were kept equal. With a rotation of the filters composed of nanofibers of 500 nm in diameter in the computational domain, the filtration efficiency and QF increased steadily. The simulation results were partially verified by electrospun cellulose acetate nanofiber filter, and meanwhile provide with new insights into the filter structure design of high filtration efficiency with low pressure drop.Item Analyzing the effect of Nanofiber Orientation on Membrane Filtration Properties with the Progressive increase in its Thickness: a Numerical and Experimental Approach(Textile Research Journal, 2020) Akampumuza, Obed; Xu, Huilin; Xiong, Jian; Zhang, Hongnan; Quan, Zhenzhen; Qin, XiaohongOne of the merits of modeling is that the computer-generated data is used in optimizing equipment and experimental designs, eliminating the costs associated with scaling up by experimentation. In this work, the filtration performance of nanofibers aligned diversely within virtual webs was numerically analyzed using Star CCM + and Ansys Fluent software. This knowledge was then used to fabricate two distinctly oriented nanofiber membranes via free surface electrospinning. Their filtration performance was studied by capillary flow porometry technology using POROLUXTM 100. The results of this were in agreement with the simulation work.Item Raising Nanofiber Output: The Progress, Mechanisms, Challenges, and Reasons for the Pursuit(Macromolecular Materials and Engineering, 2018) Akampumuza, Obed; Gao, Hanchao; Zhang, Hongnan; Wu, Dequn; Qin, Xiao-HongThe paper discusses the extent to the scale of the electrospun fiber membrane. Literatures show that two distinct methods of raising electrospun nanofiber production can be employed via spinning from a setup of multiple nozzles arranged side by side or from an expanse of polymer solution (needleless electrospinning). Both of these methods are thoroughly explored by considering the variations available within either of their respective productivities. Their mechanisms are duly dealt with by looking at principles and parameters behind the process performances and an analysis of the strategies devised to deal with the shortcomings and ensure process feasibility is given. It has to be noted that most of the available work on electrospinning and their applications is achieved via single needle electrospinning. In this review, a projection is taken to be accomplished whether the nanofiber production can be consistently raised to commercial levels at the exceptional application routes so far produced by the conventional electrospinning means.Item Review of the Applications of Biocomposites in the Automotive Industry(Polymer Composites, 2017) Akampumuza, Obed; Wambua, Paul. M.; Ahmed, Azzam; Li, Wei; Qin, XiaoHongThe article provides an overview of biocomposite application in the automotives via a documentation of their history, chronology and progressive steps taken to break into the production lines of a number of key auto makers. It offers a detailed analysis of the key factors that have motivated the research and subsequent adoption of biocomposites; taking a peek at the advantages, disadvantages, and challenges experienced in the process. Auto makers and parts suppliers that have been a force behind this campaign, have also been accorded a fair share in the article. Future projection of role of these materials in the industry; with the ideas well dressed in form of bio concept cars caps up the paper. Automotive refers to; passenger cars, sport utility vehicles, vans, trucks, buses, and recreational vehicles.Item Simulation of Bimodal Fiber Distribution Effect on Transient Accumulation of Particles During Filtration(Journal of Shanghai Jiaotong University (Science), 2021) Akampumuza, Obed; Wu, Jiajun; Quan, Zhenzhen; Qin, XiaohongModeling has become phenomenal in developing new products. In the case of filters, one of the most applied procedures is via the construction of idealized physical computational models bearing close semblance to real filter media. It is upon these that multi-physics tools were applied to analyze the flow of fluid and the resulting typical performance parameters. In this work, two 3D filter membranes were constructed with MATLAB; one had a random distribution of unimodal nanofibers, and the other, a novel modification, formed a bimodal distribution; both of them had similar dimensions and solid volume fractions. A comparison of their performance in a dust-loading environment was made by using computational fluid dynamic-discrete element method (CFD-DEM) coupling technique in STAR-CCM+. It was found that the bimodal nanofiber membrane greatly improved the particle capture efficiency. Whereas this increased the pressure drop, the gain was not too significant. Thus, overall, the results of the figure of merit proved that adopting a bimodal formation improved the filter’s quality.