Browsing by Author "Whitney, Cory W."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Crop diversity in homegardens of southwest Uganda and its importance for rural livelihoods(Agriculture and Human Values, 2018) Whitney, Cory W.; Luedeling, Eike; Tabuti, John R. S.; Nyamukuru, Antonia; Hense, Oliver; Gebauer, Jens; Kehlenbeck, KatjaHomegardens are traditional food systems that have been adapted over generations to fit local cultural and ecological conditions. They provide a year-round diversity of nutritious foods for smallholder farming communities in many regions of the tropics and subtropics. In southwestern Uganda, homegardens are the primary source of food, providing a diverse diet for rural marginalized poor. However, national agricultural development plans as well as economic and social pressures threaten the functioning of these homegardens. The implications of these threats are difficult to evaluate, because the structure and functions of the homegardens are not well understood. The aim of the study was to identify patterns and influencing factors in the diversity of homegardens by documenting the floristic diversity and its interactions with spatial, environmental and socio-economic factors. A geographically and socially focused assessment of floristic diversity in 102 randomly selected homegardens in three districts of southwest Uganda was conducted along a deforestation gradient following a human ecology conceptual framework and testing multiple quantitative hypotheses regarding the above mentioned factors. A merged mixed-method approach was followed to provide context and feedback regarding quantitative findings. Results show a high total richness of 209 (mean 26.8 per homegarden) crop species (excluding weeds and ornamentals) dominated by food species, which constituted 96 percent of individuals and 44 percent of all species. Forest-edge homegardens maintained higher plant diversity compared to homegardens in deforested areas and near degraded wetlands. Multiple linear regression models indicated elevation, location, homegarden size, distance to market, additional land ownership (outside the homegarden) and livestock ownership as significant predictors of crop diversity. Cluster analysis of species densities revealed four garden types: ‘diverse tree gardens’, ‘small forest-edge gardens’, ‘large, old, species-rich gardens’, and ‘large, annual-dominated herb gardens’, with 98% correct classification. Location, elevation, and garden size were also important determinants in the cluster assignment. We conclude that the diversity of the studied homegardens may be changing as part of adaptive traditional practices and in response to external drivers. The identified patterns illustrate the importance of homegardens for rural livelihoods and may offer some ways to support farmers to maintain these systems as relevant mechanisms for development in Uganda.Item First record of baobab (Adansonia digitata L.) in Uganda(Genetic Resources and Crop Evolution, 2016) Gebauer, Jens; Whitney, Cory W.; Tabuti, John R. S.The baobab (Adansonia digitata L.) is a remarkable key tree species with different uses in many African countries. International interest in the species has intensified in recent years. Despite the wide distribution of the baobab in many African regions, the tree has been reported to be absent in Uganda. In 2015 and 2016, research trips in the Central, Western, Eastern and Northern Regions of Uganda were conducted to screen the cultivated and natural flora for baobabs. As a result, four vigorous baobab trees aged 9 and 22 years were identified in two gardens in the Iganga and Soroti Districts in the Eastern Region of Uganda. The origins of the planting materials were Nyala in Sudan and Mombasa in Kenya. To our knowledge, these are the first scientific records of baobab in Uganda and some research questions and key propositions are formulated based on this discovery.Item Probabilistic decision tools for determining impacts of agricultural development policy on household nutrition(Earth's Future, 2018) Whitney, Cory W.; Lanzanova, Denis; Muchiri, Caroline; Shepherd, Keith D.; Rosenstock, Todd S.; Krawinkel, Michael; Tabuti, John R. S.; Luedeling, EikeGovernments around the world have agreed to end hunger and food insecurity and to improve global nutrition, largely through changes to agriculture and food systems. However, they are faced with a lot of uncertainty when making policy decisions, since any agricultural changes will influence social and biophysical systems, which could yield either positive or negative nutrition outcomes. We outline a holistic probability modeling approach with Bayesian Network (BN) models for nutritional impacts resulting from agricultural development policy. The approach includes the elicitation of expert knowledge for impact model development, including sensitivity analysis and value of information calculations. It aims at a generalizable methodology that can be applied in a wide range of contexts. To showcase this approach, we develop an impact model of Vision 2040, Uganda’s development strategy, which, among other objectives, seeks to transform the country’s agricultural landscape from traditional systems to large-scale commercial agriculture. Model results suggest that Vision 2040 is likely to have negative outcomes for the rural livelihoods it intends to support; it may have no appreciable influence on household hunger but, by influencing preferences for and access to quality nutritional foods, may increase the prevalence of micronutrient deficiency. The results highlight the trade offs that must be negotiated when making decisions regarding agriculture for nutrition, and the capacity of BNs to make these trade offs explicit. The work illustrates the value of BNs for supporting evidence based agricultural development decisions.