Abraham, C.J.Rix, A.J.Ndibatya, I.Booysen, M.J.2022-06-042022-06-042021Abraham, C. J., Rix, A. J., Ndibatya, I., & Booysen, M. J. (2021). Ray of hope for sub-Saharan Africa's paratransit: Solar charging of urban electric minibus taxis in South Africa. Energy for Sustainable Development, 64, 118-127.https://doi.org/10.1016/j.esd.2021.08.0030973-0826https://nru.uncst.go.ug/handle/123456789/3672Minibus taxi public transport is a seemingly chaotic phenomenon in the developing cities of the Global South with unique mobility and operational characteristics. Eventually this ubiquitous fleet of minibus taxis is expected to transition to electric vehicles, which will result in an additional energy burden on Africa's already fragile electrical grids. This paper examines the electrical energy demands of this possible evolution, and presents a generic simulation environment to assess the grid impact and charging opportunities. We used GPS tracking and spatio-temporal data to assess the energy requirements of nine electric minibus taxis as well as the informal and formal stops at which the taxis can recharge. Given the region's abundant sunshine, we modelled a grid-connected solar photovoltaic charging system to determine how effectively PV may be used to offset the additional burden on the electrical grid. The mean energy demand of the taxis was 213kWh/d, resulting in an average efficiency of 0.93kWh/km. The stopping time across taxis, a proxy for charging opportunity, ranged from 7.7 h/d to 10.6 h/d. The energy supplied per surface area of PV to offset the charging load of a taxi while stopping, ranged from 0.38 to 0.90kWh/m2 per day. Our simulator, which is publicly available, and the results will allow traffic planners and grid operators to assess and plan for looming electric vehicle roll-outs.enElectric vehicle; Paratransit; Minibus taxi; Demand management; Renewable energyRay of hope for sub-Saharan Africa's paratransit: Solar charging of urban electric minibus taxis in South AfricaArticle