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a b s t r a c t

Biomagnification of organic pollutants in food webs has been usually associated to hydrophobicity and
other molecular descriptors. However, direct information on atoms and substituent positions in a mo-
lecular scaffold that most affect this biological property is not straightforward using traditional QSPR
techniques. This work reports the QSPR modeling of biomagnification factors (logBMF) of a series of
aromatic organochlorine compounds using three MIA-QSPR (multivariate image analysis applied to
QSPR) approaches. The MIA-QSPR model based on augmented molecular images (described with atoms
represented as circles with sizes proportional to the respective van der Waals radii and having colors
numerically proportional to the Pauling's electronegativity) encoded better the logBMF data. The average
results for the main statistical parameters used to attest the model's predictability were r2¼0.85,
q2¼0.72 and r2test¼0.85. In addition, chemical insights on substituents and respective positions at the
biphenyl rings A and B, and dibenzo-p-dioxin and dibenzofuran motifs are given to aid the design of
more ecofriendly derivatives.

& 2016 Elsevier Inc. All rights reserved.
1. Introduction

Organochlorine compounds are omnipresent pollutants in the
environment and because of their high lipophilicity (they are stored
in adipose tissues) and persistency, they tend to accumulate in the
food chain. The toxicity of this class of compounds comes from their
structural difference if compared to naturally occurring substances
and, therefore, some contaminated organisms are not capable of
metabolizing them, causing accumulation (Baird and Cann, 2012).

Polychlorinated biphenyls (PCBs) and dichloro diphenyl tri-
chloroethane (DDT) are some examples of organochlorine com-
pounds with capacity to bioaccumulate and produce harmful effects
in ecosystems. Biomagnification refers to a progressive accumulation
of substances from a trophic level to another along the food chain.
Because of this phenomenon, the concentration of such micro-
pollutants in the environment has increased at rates higher than
their removal (such as degradation); studies have detected the pre-
sence of these compounds and the respective metabolites in several
matrices, as a result of their accumulation in living organisms (Font
and Marsal, 1988; Bisson and Hontela, 2002). The toxicology of PCBs
image analysis; QSPR, Quan-
gnification; PCB, poly-

.

is affected by the number and position of the chlorine atoms, as
substitution in the ortho position hinders the rotation of the rings
(PCBs without ortho substitution are referred to as coplanar and the
others are noncoplanar) (Newman, 2015). Such structures bind to the
aryl hydrocarbon receptor (AhR) and may thus exert dioxin-like ef-
fects, namely impairment of the immune system, the developing
nervous system, the endocrine system and reproductive functions
(Hahn, 1998). The analysis of the effect of structural modification (e.g.
substituent types and positions) on a given compound property (e.g.
biomagnification) is within the field of Quantitative Structure-Prop-
erty Relationships (QSPR).

Most QSPR studies for modeling environmental properties,
such as soil sorption, bioacummulation and biomagnification, are
based on octanol/water partition coefficients (logP) (Mackay et al.,
1997), due to the hydrophobic properties of the living tissues
where substances accumulate. Crowding of chlorine substituents,
as well as specific substitution patterns, play an important role in
partition of PCBs between water and octanol (Sabljic, 2001). Other
physicochemical descriptors (Todeschini and Consonni, 2000) also
provide valuable information on the molecular properties affecting
the biomagnification in a general sense, but the inherent drawback
of such analyses lies in the vague notion on the group types and/or
molecular positions that most affect the biomagnification.

Thus, this work reports the modeling of biomagnification factors
(BMF) of a series of aromatic organochlorine pollutants using three
MIA-QSPR approaches. The MIA-QSPR (multivariate image analysis
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applied to QSPR) method is known for a decade as a QSPR techni-
que capable of recognizing two-dimensional chemical structures
and encoding atomic, stereochemical and connectivity properties
using 2D projections of molecular images (in terms of pixels) as
descriptors (Freitas et al., 2005; Barigye and Freitas, 2016). Conse-
quently, particular structural features and/or positions responsible
for enhanced or attenuated BMF of aromatic organochlorine com-
pounds in living organisms can be rationalized, also contributing to
driving the synthesis of more ecofriendly compounds.
2. Materials and methods

A series of aromatic organochlorine compounds with logBMF
values experimentally available was obtained from the literature
(Fatemi and Baher, 2009) (Table 1). The original chemical analysis
reported by Henny et al. (2003) for these compounds was performed
on osprey egg and whole fish composite samples that were collected
from the Willamette River, USA. The data set molecules were drawn
using either the ACD/ChemSketch program (2009) (for the tradi-
tional MIA-QSPR model) or the GaussView program (Dennington
et al., 2008) (for the augmented MIA-QSPR models). For the aug-
MIA-QSPR models, atoms were represented as spheres with sizes
Table 1
Compounds used in the QSAR modeling and respective logBMF values.a

Cpd
number

Name Notation logBMFexp

1 2378TCDF TCDF �0.12
2 hexachlorobenzene HCB 0.32
3 3,3,4,4-Tetrachlorobiphenyl PCB77 0.77
4 2,4,4,5-Tetrachlorobiphenyl PCB74 0.83
5 2,3,4,4-Tetrachlorobiphenyl PCB60 0.90
6 2,2,3,4,5,6-Hexachlorobiphenyl PCB149 0.95
7 2,2,3,3,4,5,6-Heptachlorobiphenyl PCB174 1.00
8 1,2,3,4,6,7,8,9-Octachlorodibenzofuran OCDF 1.00
9 2,3,3,4,6-Pentachlorobiphenyl PCB110 1.04
10 2,2,4,4,5-Pentachlorobiphenyl PCB99 1.11
11 2,2,4,5,5,-Pentachlorobiphenyl PCB101 1.25
12 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD 1.25
13 2,3,4,4,5-Pentachlorobiphenyl PCB118 1.30
14 3,3,4,4,5,5-Hexachlorobiphenyl PCB169 1.32
15 2,3,3,4,4-Pentachlorobiphenyl PCB105 1.36
16 2,2,3,3,4,4,6-Heptachlorobiphenyl PCB171 1.36
17 2,2,3,4,5,5,-Hexachlorobiphenyl PCB141 1.43
18 2,2,3,4,4,5,6-Heptachlorobiphenyl PCB183 1.43
19 2,2,3,3,4,4,5,5-Octachlorobiphenyl PCB194 1.43
20 2,2,3,4,4,5,5,6-Octachlorobiphenyl PCB203 1.43
21 3,3,4,4,5-Pentachlorobiphenyl PCB126 1.43
22 2,2,3,4,4,5-Hexachlorobiphenyl PCB138 1.46
23 2,2,4,4,5,5-Hexachlorobiphenyl PCB153 1.46
24 2,2,3,4,5,5-Hexachlorobiphenyl PCB146 1.48
25 2,2,3,3,4,5,6,6-Octachlorobiphenyl PCB201 1.48
26 2,2,3,3,4,5,6,6-Octachlorobiphenyl PCB200 1.50
27 2,2,3,3,4,5,5-Heptachlorobiphenyl PCB172 1.53
28 2,2,3,4,4,5,5-Heptachlorobiphenyl PCB180 1.53
29 1,1-Dichloro-2,2-(4-ClC6H4)ethane p,p-DDD 1.61
30 Dichlorodiphenyltrichloroethane DDT 1.92
31 1,1-Dichloro-2,2-(4-ClC6H4)ethene p,p-DDE 2.19
32 1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin H6CDD 2.44
33 1,2,3,4,6,7,8-Heptachlorodibenzo-p-

Dioxin
H7CDD 2.44

34 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-
Dioxin

OCDD 2.49

35 2,3,4,4-Tetrachlorobiphenyl PCB66 0.83
36 2,2,3,5,6-Pentachlorobiphenyl PCB95 0.83
37 2,2,3,3,4,4,5-Heptachlorobiphenyl PCB170 1.53
38 2,3,3,4,4,5,6-Heptachlorobiphenyl PCB190 1.53
39 2,2,3,4,4,5,6-Heptachlorobiphenyl PCB182 1.39
40 2,2,3,4,5,5,6-Heptachlorobiphenyl PCB187 1.39

a The chemical structures are given in the Supplementary material.
proportional to the van der Waals radii and colored differently to
distinguish them, since different numbers are assigned to each color
pixel (from 0 – black, to 765 – white), consistent with the RGB (red-
green-blue) system of colors. For the aug-MIA-QSPRcolor model, the
pixel values were numerically proportional to Pauling's electro-
negativity, in order to encode electrostatic interactions possibly
ruling the biomagnification factors. The congruent chemical sub-
structures were overlaid for 2D alignment purposes, in such a way
that only variable motifs explain the variance in the y block. Each
image was saved as bitmaps and converted to a numerical x� y
matrix. Subsequently, the n images (compounds) were grouped to
form a three-way array n� x� y, which was unfolded to an n�
(x� y) matrix. This matrix was divided into training (80% of com-
pounds) and test (20% of compounds) set compounds. Five splits
were performed to test the model’s robustness. Because of the large
data matrix obtained from this procedure (thousands columns), a
search for the best 5 variable model for the logBMF was performed
using the Multiple Linear Regression method coupled with the Ge-
netic Algorithm (MLR-GA). Preliminary unsupervised feature selec-
tion based on Shannon's entropy (variables with less than 10% of
entropy were discarded) and the variable correlation coefficients (X/
X¼0.98) was performed. The built QSPR models were validated
using leave-one-out cross-validation (LOOCV) and external valida-
tion procedures. Other measures considered in the assessment of
the quality of the built model include: the determination coefficient
between actual and predicted logBMF (q2 and r2test), root mean
square error of prediction (RMSECV and RMSEP) and the modified
r2test (rm2) parameter, according to the criteria established in the lit-
erature (Roy et al., 2013). In addition, the reliability of the model was
attested using the y-randomization test [analyzed in terms of the
corrected penalized r2 (crp2)] (Mitra et al., 2010), in which the y-
block is shuffled and regression performed to verify the inexistence
of chance correlation. The image treatment and statistical analysis
were performed using the Chemoface program (Nunes et al., 2012).
3. Results and discussion

The predictive ability of the MIA-QSPR models for the 40 aro-
matic organochlorine compounds of Table 1 was evaluated using
three approaches: 1) traditional MIA-QSPR, in which descriptors
correspond to black and white pixels and chemical structures are
represented as wireframes; 2) aug-MIA-QSPR, in which descriptors
correspond to pixels colored according to the GaussView default
for each atom (circles with sizes proportional to the van der Waals
radii); 3) aug-MIA-QSPRcolor, whose chemical structures are iden-
tical to the aug-MIA-QSPR model, but atom colors numerically
proportional the corresponding electronegativity values. Fig. 1
shows the overlaid images representing these three models.

From the complete data matrix of thousands descriptors for each
approach (MIA-QSPR, aug-MIA-QSPR and aug-MIA-QSPRcolor), only five
independent variables were selected for further regression against the
logBMF values usingmultiple linear regression (MLR). Five QSPRmodels
were built for each approach, differing by the test set compounds used
for external validation, whose results are shown in Tables 2–4.

On the basis of the mean values for the statistical parameters of
each model, particularly those related to external validation, which
is considered the only way to establish a reliable QSPR model
(Golbraikh and Tropsha, 2002), we found that models based on
augmented images are more predictive than traditional MIA-QSPR.
Moreover, the method that includes pixel colors proportional to the
atomic electronegativity (aug-MIA-QSPRcolor) showed to be slightly
better. This small difference between the models obtained using
aug-MIA descriptors indicates that steric (hydrophobicity) rather
than electrostatic (encoded by the atoms electronegativity) effects
are more effective to explain the biomagnification property of



Fig. 1. Superposed images used for the building of the MIA-QSPR models (ring A is used for 2D alignment).

Table 2
Statistical parameters for the traditional MIA-QSPR model.a

Parameter Test set 1 Test set 2 Test set 3 Test set 4 Test set 5 Average

RMSEcv 0.2453 0.2571 0.2022 0.2460 0.2653 0.2432
r2cv 0.7730 0.7534 0.8391 0.7697 0.6917 0.7654
RMSEc 0.2112 0.2253 0.1807 0.2148 0.2256 0.2115
r2cal 0.8306 0.8095 0.8711 0.8236 0.7746 0.8219
RMSE y-rand 0.4587 0.4560 0.4579 0.4664 0.4347 0.4547
r2 Yrand 0.1945 0.2145 0.1693 0.1627 0.1611 0.1804
r2p(y-rand) 0.6625 0.6244 0.7297 0.6696 0.6067 0.6586
RMSEp 0.2227 0.1650 0.3149 0.2191 0.1638 0.2171
r2pred 0.7785 0.8677 0.6217 0.7864 0.9296 0.7968
r2m(test) 0.5654 0.7949 0.3527 0.6398 0.7804 0.6266

a Test set 1: 3; 6; 11; 16; 19; 24; 32; 37. Test set 2: 4; 7; 12; 20; 25; 33; 38; 39. Test set 3: 2; 5; 10; 15; 18; 23; 28; 31. Test set 4: 8; 13; 21; 26; 29; 34; 35; 40. Test set 5: 1;
9; 14; 17; 21; 27; 30; 36.

Table 3
Statistical parameters for the aug-MIA-QSPR model.a

Parameter Test set 1 Test set 2 Test set 3 Test set 4 Test set 5 Average

RMSEcv 0.236 0.278 0.230 1.287 0.209 0.4479
r2cv 0.797 0.745 0.800 0.462 0.808 0.7222
RMSEc 0.198 0.199 0.192 0.194 0.185 0.1935
r2cal 0.851 0.852 0.855 0.855 0.848 0.8524
RMSE y-rand 0.459 0.472 0.460 0.473 0.448 0.4625
r2 Yrand 0.196 0.161 0.162 0.143 0.109 0.1541
r2p(y-rand) 0.689 0.708 0.712 0.722 0.730 0.7122
RMSEp 0.199 0.197 0.224 0.239 0.288 0.2295
r2pred 0.822 0.820 0.927 0.748 0.873 0.8381
r2m(test) 0.688 0.756 0.540 0.451 0.784 0.6437

a Test set 1: 3; 6; 11; 16; 19; 24; 32; 37. Test set 2: 4; 7; 12; 20; 25; 33; 38; 39. Test set 3: 2; 5; 10; 15; 18; 23; 28; 31. Test set 4: 8; 13; 21; 26; 29; 34; 35; 40. Test set 5: 1;
9; 14; 17; 21; 27; 30; 36.

Table 4
Statistical parameters for the aug-MIA-QSPRcolor model.a

Parameter Test set 1 Test set 2 Test set 3 Test set 4 Test set 5 Average

RMSEcv 0.2292 0.2561 0.6281 0.2498 0.2862 0.3299
r2cv 0.8009 0.7657 0.5884 0.7657 0.6894 0.7220
RMSEc 0.1879 0.1909 0.1959 0.2006 0.1991 0.1949
r2cal 0.8659 0.8631 0.8485 0.8461 0.8245 0.8496
RMSE y-rand 0.4628 0.4767 0.4712 0.4866 0.4362 0.4667
r2 Yrand 0.1828 0.1450 0.1227 0.0934 0.1546 0.1397
r2p(y-rand) 0.7157 0.7314 0.7228 0.7341 0.6748 0.7157
RMSEp 0.2310 0.2261 0.2048 0.1957 0.2061 0.2127
r2pred 0.8451 0.7808 0.8719 0.8759 0.8978 0.8543
r2m(test) 0.3529 0.6835 0.7957 0.6778 0.8796 0.6779

a Test set 1: 3; 6; 11; 16; 19; 24; 32; 37. Test set 2: 4; 7; 12; 20; 25; 33; 38; 39. Test set 3: 2; 5; 10; 15; 18; 23; 28; 31. Test set 4: 8; 13; 21; 26; 29; 34; 35; 40. Test set 5: 1;
9; 14; 17; 21; 27; 30; 36.
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Table 6
Correlation matrix (expressed in terms of the determination coefficient) among
aug-MIAcolor descriptors.

X1885 X2209 X9854 X11819 X13248

X1885 1 0.81 0.01 0.03 0.08
X2209 1 0.00 0.07 0.03
X9854 1 0.01 0.02
X11819 1 0.70
X13248 1

Table 5
Matrix of selected aug-MIA-QSPRcolor descriptors.

Cpd
number

X1885 (ca.
R5)

X2209 (ca.
R5)

X9854 (ca.
R3)

X11819 (ca.
R6)

X13248 (ca.
R9)

1 210 210 765 250 765
2 300 612 765 765 765
3 765 210 765 765 612
4 300 765 765 765 612
5 765 210 765 765 612
6 765 210 765 765 612
7 300 765 250 765 612
8 300 765 765 250 300
9 765 210 250 765 612
10 300 765 250 765 612
11 300 765 250 765 612
12 765 210 765 210 250
13 300 765 250 765 612
14 300 765 250 765 612
15 765 210 250 765 612
16 765 210 765 765 612
17 300 612 765 765 612
18 765 210 765 765 612
19 300 612 765 765 612
20 300 612 765 765 612
21 300 612 765 765 612
22 765 210 765 765 612
23 300 612 765 765 612
24 300 612 765 765 612
25 765 210 765 765 612
26 300 612 765 765 612
27 300 612 765 765 612
28 300 612 765 765 612
29 765 210 300 210 250
30 765 210 300 210 250
31 765 210 300 210 250
32 765 210 765 300 250
33 300 612 765 300 250
34 300 612 765 300 250
35 765 210 765 765 612
36 765 210 765 765 612
37 300 612 765 765 612
38 300 612 765 765 612
39 300 612 765 765 612
40 300 612 765 765 612
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polychlorinated aromatic compounds. Considering the range in
logBMF along the series of ca. 2.6 and an error in calibration and
external validation of ca. 0.2 (o10%), all the models can predict
accurately the biomagnification of aromatic organochlorine
derivatives. Special emphasis will be given further to the aug-MIA-
QSPRcolor model, which was found to be predictive, robust and not
prone to chance correlation, as attested by the statistical parameters
depicted in Tables 2–4, as explained in the earlier section.

Thus, on the basis of the selected descriptors of Table 5, it is possible
to analyze which substituents and positions most affect the logBMF
values. The selected aug-MIAcolor descriptors are mostly uncorrelated
(Table 6), while those presenting some redundancy (X1885�X2209)
lie on the region surrounding a same substituent (R5). Thus, either
X1885 or X2209 could be removed from the data matrix, but this
procedure reduced significantly the prediction ability of the model.
Moreover, the presence of both descriptors could be advantageous to
capture complimentary information on how substitution at the corre-
sponding position affects the biomagnification factor. According to the



Fig. 2. Plots of experimental vs. predicted BMF for the aug-MIA-QSPRcolor models. Note that the model for Eq. 3 exhibits an anomalous behavior for compound 1 in the leave-
one-out cross-validation, causing decrease in q2.
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most predictive aug-MIA-QSPRcolor model (see plots for experimental
versus predicted logBMF values in Fig. 2), the substituent position
surrounding the selected descriptors are: R5 (biphenyl ring A): X1885;
R5 (biphenyl ring A): X2209; R5 (biphenyl ring B): X9854; R6 (dibenzo-
p-dioxin): X11819; R9 (dibenzofuran): X13248.

The following MLR equations corresponding to the aug-MIA-
QSPRcolor models give information on the weight of each selected
descriptor and, therefore, of each substituent on the logBMF va-
lues. Consequently, it is possible to anticipate whether the absence
of atoms at a given pixel/variable position (due to a long chemical
bond or a small atom, giving rise to a blank region in the image
and, consequently, yielding pixels 765 – white) or the presence of
chlorine atoms (pixel 300, or long chemical bonds C-Cl with pixel
value 612) contribute either to increase or decrease the logBMF
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values. Most of the coefficients in the MLR equations are negative
and, therefore, the occupation of coordinates X1885, X2209, X9854
and X13248 by a chlorine atom, instead of hydrogens or absence of
atoms, lead to an increase of logBMF values. On the other hand, the
presence of hydrogen (pixel 210) instead of chlorine at position
X11819 is favorable, since the coefficient of this variable is positive
in all five models. Consequently, considering prospective aromatic
organochlorine compounds to be synthesized, we suggest avoid-
ing the introduction of chlorine atoms particularly at positions R5
of the biphenyl ring A, R3 of the biphenyl ring B, R6 of the di-
benzo-p-dioxin group, and R9 of the dibenzofuran motif. Con-
sidering the symmetry of biphenyls and that the crowding of
chlorine substituents in PCBs increases properties related to bio-
magnification (Sabljic, 2001), the other meta-sites similar to R3
and R5 should also affect the logBMF values, but they were re-
moved during the variable selection step probably because of the
high correspondence with R3 and R5.

Equation 1 (model obtained from the training set without
samples of test set 1):

logBMF¼7.3172�0.0044�X1885�0.0041�X2209–0.0006�
X9854þ0.0046�X11819–0.0083�X13248.

Equation 2 (model obtained from the training set without
samples of test set 2):

logBMF¼7.3135�0.0042�X1885�0.0039�X2209–0.0005�
X9854þ0.0044�X11819–0.0084�X13248.

Equation 3 (model obtained from the training set without
samples of test set 3):

logBMF¼7.4719�0.0045�X1885�0.0042�X2209–0.0005�
X9854þ0.0047�X11819–0.0087�X13248.

Equation 4 (model obtained from the training set without
samples of test set 4):

logBMF¼7.0724�0.0040�X1885�0.0037�X2209–0.0005�
X9854þ0.0043�X11819–0.0082�X13248.

Equation 5 (model obtained from the training set without
samples of test set 5):

logBMF¼7.5851�0.0045�X1885�0.0043�X2209–0.0006�
X9854þ0.0050�X11819–0.0089�X13248.

The mechanism of the biomagnification process is still unresolved,
but there is clear evidence that, in aquatic organisms, it is related to
bioconcentration and, consequently, to the propensity of hydrophobic
organic chemicals to be absorbed through the respiratory and dermal
surfaces Gobas and Morrison, 2000). Thus, hydrophobicity should play a
decisive role for the biomagnification mechanism. Gobas et al. (1999)
hypothesized a fugacity based model of the gastrointestinal absorption of
contaminants (PCBs), suggesting that in food chains, lipid rich prey-items
will not only result in a larger exposure of the predator to bioaccumu-
lative substances, but also result in larger gastrointestinal magnification
factors which can lead to higher bioaccumulation factors in the predator.
In line with this, we have found that hydrophobic chlorine atoms bound
to biphenyl rings, dibenzo-p-dioxin groups and dibenzofurans increase
the logBMF values of organochlorine pollutants and, most importantly,
that specific positions of chlorine atoms affect the biomagnification more
than others, giving additional chemical insights for detailing the bio-
magnification mechanism. This result is consistent with previous reports
in the literature (International Program on Chemical Safety, World Health
Organization, 2003), and thus demonstrating the theoretical and practical
contribution of the aug-MIA-QSAR method in BMF modeling.

Data reporting the effect of the position of chlorine atoms on the
biomagnification factors of polycyclic aromatic hydrocarbons are
scarce and, therefore, an straightforward analysis based on sub-
stituent positions has not been clear yet. QSPRs on similar biological
factors mostly mention the important role of the amount of sub-
stituents, e.g. the study by de Melo (2012), in which the bioconcen-
tration factors of polychlorinated biphenyls in fishes were found to
increase with the number of chlorine substituents. One of the few
studies reporting the influence of chlorine substitution pattern on
biological properties shows that degradation of polychlorinated bi-
phenyls depends on the bacterial strain (Bedard and Haberl, 1990). A
systematic evaluation of some PCBs has shown that subtle structural
changes in chlorine substitution pattern affected the aryl hydrocarbon
hydroxylase (AHH) induction potency in rat: 3,3′,4,4′-tetra-, 3,3′,4,4′,5-
penta- and 3,3′,4,4′,5,5′-hexachlorobiphenyls 43,4,4′,5-tetrachloro-
biphenyl � mono-ortho coplanar PCBs4di-ortho coplanar PCBs (Safe
et al., 1985). With respect to biomagnification, ortho-substituted PCB
congeners with no unsubstituted meta-para positions have shown
high biomagnification potential, while PCBs with low biomagnifica-
tion have adjacent vicinal hydrogens, indicating that congeners with
this feature may have beenmetabolically eliminated (Andersson et al.,
2001). The present work contributes for a systematic insight of the
influence of chlorine substitution pattern on the biomagnification
factors of important classes of polychlorinated aromatic hydro-
carbons. As an example of application and chemical interpretation
from our findings, the selected R2 and R3 substituents are not at ortho
position and, therefore, a coplanar structure (characteristic of dioxins
and furans) is expected for biphenyls with high biomagnification
factors. Other structural insights as mentioned earlier can provide
useful information for the design of less toxic compounds.
4. Conclusion

All three MIA-QSPR models tested can be considered predictive,
but aug-MIA-QSPRcolor descriptors offer advantages in terms of
prediction, validation (including reliability) and interpretability of
the model, since pixels are colored according to a chemically
comprehensible property (electronegativity). Thus, logBMF for
different aromatic organochlorine analogues can be predicted
from the insights of this work and, in addition, the synthesis of
prospective, more ecofriendly derivatives can be driven on the
basis of the outcomes of the present QSPR modeling. That is,
considering the outcomes of the aug-MIA-QSPRcolor models, it is
environmentally desirable to avoid chlorine atoms at X1885,
X2209, X9854, X11819 and X13248 pixel coordinates, corre-
sponding to R5 of the biphenyl ring A, R3 of the biphenyl ring B, R6
of the dibenzo-p-dioxin group, and R9 of the dibenzofuran motif.
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