Browsing by Author "Tabari, Hossein"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Analyses of rainfall trends in the Nile River Basin(Journal of hydro-environment research, 2016) Onyutha, Charles; Tabari, Hossein; Taye, Meron T.; Nyandwaro, Gilbert N.; Willems, PatrickTrends in rainfall at 39 locations of the Nile River Basin (NRB) in Africa were analyzed. Comparison was made between rainfall trend results from the long-term data and those of short-term series selected over different time periods. The bias on trend results from series of short-term records was quantified. Homogeneity test was conducted to assess the coherence of the trend directions on a regional basis. Based on an assumed population (for simplicity) of rainfall data time periods in the range 75–100 years, bias in the short-term trend analysis was noted to reduce by about 10% for every 10% increase in record length. Under some conditions if respected, it was possible to derive trends at stations with short records based on those at nearby stations with longer term records but in the same region. Using the same data record length and uniform time period at all the selected stations, an improved regional coherence of rainfall trend results was obtained. In the equatorial region, trend in annual rainfall was found mainly positive and significant at level α = 5% in 4 of the 7 stations. Collectively for Sudan, Ethiopia and Egypt, trends in the annual rainfall were mostly negative and significant at α = 5% in 69% of the 32 stations. Heterogeneity in the trend directions for the entire NRB was confirmed at α = 1% in 13% of the 39 stations. These findings are vital for water and agricultural management practices. © 2015 International Association for Hydro-environment Engineering and Research, Asia Pacific Division. Published by Elsevier B.V. All rights reserved.Item Combined Use of Graphical and Statistical Approaches for Analyzing Historical Precipitation Changes in the Black Sea Region of Turkey(Water, 2020) Mustafa Cengiz, Taner; Tabari, Hossein; Onyutha, Charles; Kisi, OzgurMany statistical methods have been developed and used over time to analyze historical changes in hydrological time series, given the socioeconomic consequences of the changes in the water cycle components. The classical statistical methods, however, rely on many assumptions on the time series to be examined such as the normality, temporal and spatial independency and the constancy of the data distribution over time. When the assumptions are not fulfilled by the data, test results are not reliable. One way to relax these cumbersome assumptions and credibilize the results of statistical approaches is to make a combined use of graphical and statistical methods. To this end, two graphical methods of the refined cumulative sum of the di erence between exceedance and non-exceedance counts of data points (CSD) and innovative trend analyses (ITA)-change boxes alongside the classical statistical Mann–Kendall (MK) method are used to analyze historical precipitation changes at 16 stations during 1960–2015 in the Black Sea region of Turkey. The results show a good match between the results of the graphical and statistical methods. The graphical CSD and ITA methods, however, are able to identify the hidden trends in the precipitation time series that cannot be detected using the statistical MK method.Item Decadal Analysis of River Flow Extremes Using Quantile-Based Approaches(er Resources Management, 2017) Tabari, Hossein; Teferi Taye, Meron; Onyutha, Charles; Willems, PatrickNext to the traditional analysis of trends in time series of hydro-climatological variables, analysis of decadal oscillations in these variables is of particular importance for the risk assessment of hydro-climatological disasters and risk-based decision-making. Conventional parametric and nonparametric tests, however, need implementing a set of background assumptions related to serial structure and statistical distribution of data. They neither focus on the extreme events and their probability of occurrence. In order to get rid of these limitations, we suggest a modified version of the Sen Method (SM), combined with the Quantile Perturbation Method (QPM) for examining temporal variation of extreme hydrological events. The developed method is tested for decadal analysis of monthly and annual river flows at 10 hydrometric stations in the Qazvin plain in Iran. The results show oscillatory patterns in extreme river flow quantiles, with a positive anomaly during the 1990s and a negative one during the 2000s. It is also shown that the concurrent use of the two methods allows to set a complete picture on the temporal changes in high and low extremes in historical river flow observations in different seasons.Item Observed and Future Precipitation and Evapotranspiration in Water Management Zones of Uganda: CMIP6 Projections(Atmosphere, 2021) Onyutha, Charles; Asiimwe, Arnold; Ayugi, Brian; Ngoma, Hamida; Ongoma, Victor; Tabari, HosseinWe used CMIP6 GCMs to quantify climate change impacts on precipitation and potential evapotranspiration (PET) across water management zones (WMZs) in Uganda. Future changes are assessed based on four Shared Socioeconomic Pathways (SSP) scenarios including SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 over the periods 2021–2040, 2041–2060, 2061–2080, and 2081–2100. Both precipitation and PET are generally projected to increase across all the WMZs. Annual PET in the 2030s, 2050s, 2070s, 2090s will increase in the ranges 1.1–4.0%, 4.8–7.9%, 5.1–11.8%, and 5.3–17.1%, respectively. For the respective periods, annual precipitation will increase in the ranges 4.0–7.8%, 7.8–12.5%, 7.9–19.9%, and 6.9–26.3%. The lower and upper limits of these change ranges for both precipitation and PET are, respectively, derived under SSP1-2.6 and SSP5-8.5 scenarios. Climate change will impact on PET or precipitation disproportionately across the WMZs. While the eastern WMZ (Kyoga) will experience the largest projected precipitation increase especially towards the end of the century, the southern WMZ (Victoria) exhibited the largest PET increase. Our findings are relevant for understanding hydrological impacts of climate change across Uganda, in the background of global warming. Thus, the water sector should devise and implement adaptation measures to impede future socioeconomic and environmental crises in the country.