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A Literature Review on Sampling Techniques in
Semiconductor Manufacturing

Justin Nduhura-Munga, Gloria Rodriguez-Verjan, Stéphane Dauzère-Pérès, Claude Yugma,
Philippe Vialletelle, and Jacques Pinaton

Abstract—This paper reviews sampling techniques for inspec-
tion in semiconductor manufacturing. We discuss the strengths
and weaknesses of techniques developed in the last last 20 years
for excursion monitoring (when a process or machine falls out
of specifications) and control. Sampling techniques are classified
into three main groups: static, adaptive, and dynamic. For
each group, a classification is performed per year, approach,
and industrial deployment. A comparison between the groups
indicates a complementarity strongly linked to the semiconductor
environment. Benefits and drawbacks of each group are dis-
cussed, showing significant improvements from static to dynamic
through adaptive sampling techniques. Dynamic sampling seems
to be more appropriate for modern semiconductor plants.

Index Terms—Control, sampling, semiconductor.

I. Introduction

S eMICONDUCTOR manufacturing is characterized by
more than 700 processing steps, resulting in a significant

cycle time of more than two months. With the reduction in
device sizes, re-entrant flows (repetition of similar processing
steps), and the variety of products to be manufactured, the
complexity has strongly increased these recent years. This
complexity, combined with the strong competition, forces
semiconductor manufacturers to introduce several layers of
controls in order to guarantee high yield [1]. Therefore,
after some process steps, control operations are introduced
at different levels (product, process, and equipment) in order
to verify that the process is still under control and the
product within specifications. However, due to the cost of an
inspection [2] and the related impact on cycle times [3], each
time a control operation is introduced, a sampling strategy has
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to be defined in order to find the trade-off between yield and
cycle time [4] [5].

A sampling strategy consists in selecting some lots to
measure depending on the available capacity in metrology [6].
This selection of lots to measure aims at minimizing risk in
production. Not selecting the best lots to measure can lead to
significant losses, especially when a problem occurs. Depend-
ing on the production environment, different sampling strate-
gies have to be developed. This is not recent in semiconductor
manufacturing [7] [8] [9]. One of the main reasons is that a
100-percent inspection does not provide 100-percent quality
since, in semiconductor manufacturing, the inspection is never
totally reliable and can easily introduce an error of almost
the same order as the fraction of defectives [10]. Significant
improvements have been observed in sampling techniques and,
today, new challenges are being faced. Complex sampling
techniques can now be deployed for real time analysis.

This paper surveys sampling techniques that have been
developed in the past twenty years for metrology steps (defect
inspection, critical dimensions, overlay, thickness, or step
height measurements) in semiconductor manufacturing. We
will discuss the trade-off between the cost of inspection and
the related cost in term of risk reduction, the development of an
effective sampling technique, and future challenges. Articles
from the literature are reviewed through statements, critical
analysis, and also discussions on industrial deployments in
semiconductor plants.

In semiconductor manufacturing, sampling techniques are
grouped into three main groups [11]:

1) Excursion monitoring and control aim at frequently
monitoring the process so that any process deviations
are caught and the causes for the process excursion are
fixed.

2) Process integration and yield improvement aim at
adjusting the percentage of lots flagged at the start of
their production (baseline lots) in order to identify the
main detractors for a given technology and eliminate
them. For low-mix semiconductor plants, the percentage
of lots flagged at the start of production is adjusted
in order to compensate the potential loss based on
measurement results.

3) Defect detection and learning aim at learning on dif-
ferent defect types and their casual mechanisms: Killer
rates. The rate of sampling has to enable defect detection
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at a rate that is matched to the one of root-cause analysis
and problem fixing.

In this survey, we focus on the first group of sampling
techniques: Excursion monitoring and control. The objective
is twofold: Reduce the number of measurements without
increasing the risk in production, and detect as quickly as
possible potential excursions. Missing these two objectives
may lead to significant losses. Indeed, if the focus is only
on the reduction of measurements, the danger is to miss the
detection of potential excursions. For critical layers [12] or
when a process is likely to be out of control, increasing
the number of measurements can help to detect as quickly
as possible excursions. Similarly, if the focus is only on
excursion monitoring, the danger is to increase the number of
measurements leading to increased cycle times, and therefore
increased product costs. However, the application of excursion
monitoring and control may vary depending on the product
life cycle. When a new product is introduced, the number of
measurements must be increased because of the high risk of
excursion. In the ramp-up phase, the number of measurements
will progressively be reduced before being stabilized during
the mature phase, and finally strongly reduced in the end-
of-life phase [13]. The goal is to better use the available
metrology capacity.

We classify sampling techniques into three main groups:
Static, adaptive, and dynamic. Static or start sampling tech-
niques are based on fixed rules that are not changed throughout
production. Adaptive sampling techniques consist in adapting
sampling rules defined at the start of production. Depending
on information brought by other types of controls (statistical
analysis, process variations, maintenance, etc.), rules defined at
the start of production are adjusted in order to prevent potential
drifts or reduce the material at risk (number of lots processed
on a production tool between two controls). Dynamic sampling
techniques consist in selecting in real time the best lots or
wafers to measure depending on the inspection capacity and
the actual situation. No rule is defined at the start of production
and the decision to sample or not a lot is taken before the
inspection step, and based on the information brought by the
lot.

For each group (static, adaptive, and dynamic sampling
techniques), we define six indicators: Year, mathematical tech-
nique, rule-based technique, industrial deployment, simulation,
and comparison with other techniques.

The paper is structured as follows. Section II presents and
discusses Static sampling techniques. Section III and Sec-
tion IV describe Adaptive and Dynamic sampling techniques
respectively. Section V concludes the paper and provides
avenues for further research.

II. Static or Start Sampling

Static or start sampling technique consists in determining
a fixed number of lots to measure at different manufacturing
stages. The number of lots to measure depends on the available
inspection capacity, the maturity of the technology, and the
process step criticality [14]. The frequency and the sensitivity
of the measurement are selected in advance, at the start of
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Lazaroff et al. [17] 1991 * *
Nurani et al. [18] 1994 * *
Nurani et al. [19] 1996 *
McIntyre et al. [20] 1996 * *
Tomlinson et al. [21] 1997 * *
Scanlan et al. [22] 1998 *
Elliott et al. [23] 1999 *
Chien et al. [24] 2000 *
Lee et al. [11] 2001 *
Chien et al. [25] 2001 * *
Shumaker et al. [26] 2003 * *
Xumei et al. [27] 2003 * *
Wu and Pearn [28] 2006 * *
Kwang and Chin [29] 2008 * *

production. The objective is to monitor and detect process
drifts and limit the material at risk [15] between controls.
For example, if the sampling plan is to control one lot every
five lots, the objective is to limit the material at risk to
not more than five. By always measuring the same lots or
wafers, the technique enables the identification of the added
defect density between sequential inspection steps [16]. Other
advantages of a static sampling technique are the simplicity
of implementation and adequate resourcing [14].

The technique has been widely used in the 1990’s in most
semiconductor plants. Nowadays, it does not fit high-mix
semiconductor plants because of its main drawbacks of not
taking into account the factory dynamics and variability. For
the considered lots, there is a strong impact on the cycle
time and an increased risk of yield losses due a higher
number of steps and the significant time spent in front of each
inspection step. However, the technique is still used during
the phase of integration for some specific products. In some
semiconductor companies, especially in a low-mix context,
where a production tool can be qualified to process only a
specific type of product, the technique remains valid and some
optimized solutions can be designed. The practice is to use
tool matching and application of six sigma quality to optimize
sampling.

Among papers surveyed in Table I, note that, even if
all papers are applied to a case study of a semiconductor
plant, very few provide industrial deployments [21] [26] [29].
In [21], the study performed in an IBM plant to determine the
optimal sampling plan for the poly etch module is described.
The goal is to minimize both the risk for the product and the
cost of inspection. Three decision variables are considered in
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TABLE II

Mathematical Techniques or Approaches for Static or Start

Sampling Techniques

Algorithms or Mathematical Techniques
Nurani et al. [19] Heuristic approach
Chien et al. [24] Bayes’ theorem
Lee et al. [11] Self-Organizing Feature Map (SOFM) network
Wu and Pearn [28] Process capability index Cpmk

the study: Lot sampling interval, number of wafers per lot,
and process control limits. Results indicate that an optimal
sampling plan may require additional inspection capacity
whose cost is much lower than the benefits. In [26], a sampling
method developed at Motorola is discussed. The method is
based on two steps: The first step consists in determining
products that are good candidates for sampling, and the second
step performs analysis to determine the break-even operating
constraints. The method is developed and validated against
historical data. Results indicate a reduction of wafer test costs
by a factor of 10. Kwang and Chin [29] worked on data
management. They present an industrial deployment of an
automatic push-pull sampling methodology. The methodology
consists in the transition from manual to automated sampling
controls in order to propagate the correct sampling data
to the operators and reduce sampling errors due to human
interventions. Results indicate an increase of two percent in
productivity.

The efficiency of an algorithm depends on its application.
This is the case in semiconductor manufacturing, where the en-
vironment may completely change from one factory to another
and the degree of complexity is not always the same. Different
mathematical techniques have been proposed but none of
them has been really deployed. Table II presents mathematical
techniques and approaches surveyed in the literature.

The complexity is such that most of static or start sam-
pling techniques are rule-based and take into account some
observations within the fab, personal experiences, and statis-
tical analysis. Lazaroff et al. [17] present an evaluation of
different defect sampling techniques using linear regression.
A discussion on the strengths and weaknesses of various sam-
pling techniques for Critical Dimension (CD) measurement is
presented by Elliott et al. [23]. Chien et al. [25] and Xumei
et al. [27] worked on optimizing sampling techniques for
overlay measurements and validated their experiments through
simulations using historical data from semiconductor plants.
Nurani et al. [18] present an economic model for optimizing
a sampling plan. The model aims at specifying the number
of lots to inspect, the number of wafers within a lot, and the
number of dies per wafer. Increasing the cost of inspection
(number of lots or wafers to inspect) leads to an increased
benefit by detecting excursions very quickly. However, above
a certain limit, if the cost of inspection is still increasing, all
revenues gained by inspections will be offset by the increased
learning and subsequent defect reduction.

Close to the work of Nurani et al. [18] are the works
of McIntyre et al. [20] and Scanlan et al. [22]. McIntyre
et al. [20] discuss key factors that influence the cost of an

optimal sampling plan and Scanlan et al. [22] identify the use
of baseline lots as a key in cost inspection reduction.

In the papers on static or start sampling, the authors try to
find the best trade-off between the cost of inspections and the
cost related to the material at risk. However, decisions are only
taken at the start of production and do not consider unexpected
events that may occur during production. When for example,
the process is likely to be out-of-control, it could be more
interesting to sample more lots or wafers in order to detect
potential drifts as quickly as possible. When the process is
within control, metrology capacity could be saved by reducing
the number of sampled lots. These main drawbacks of static
sampling led to the introduction and development of adaptive
sampling strategies.

III. Adaptive Sampling

Adaptive sampling consists in adjusting sampling decisions
defined at the start of production. The technique is based on the
start/static sampling technique but the main difference is that
the number of lots or wafers to select is adjusted throughout
production depending on the process state. Most feedback
and feed-forward process control techniques are used in con-
junction with Statistical Process Control (SPC) techniques
to improve sampling efficiency and effectiveness [30] [31].
Table III presents a survey of adaptive sampling techniques in
semiconductor manufacturing.

The transition from static to adaptive sampling started
in the second part of the 1990’s [32] and a significant
contribution can be noticed between 1995 and 2005. First
industrial deployments can be observed in the beginning of the
2000’s [36] [37] [41]. However, among twenty-seven papers
browsed in this review (Table III), only eight indicate an
industrial deployment. Moreover, among these eight papers, no
indication or comparison with other techniques or technologies
is given. This shows the complexity and the particularity of
the semiconductor environment. Depending on the amount of
data to handle, and the strategies in semiconductor plant, a
solution can be efficient when simulated but be impractica-
ble because of unexpected events or factory dynamics. The
specificity of each factory is such that a given solution can
be efficient in one factory and be completely impracticable
in another. This explains why no comparison is presented in
the literature. Moreover, strong competition and confidentiality
reasons explain why many works are not published. Most of
the works published or patented do not detail the technical
aspects, and actual performances are never published.

Among papers that indicate industrial deployments,
Williams et al. [36] [37] present the results of a joint re-
search project between Intel Corporation and KLA-Tencor.
The project consists in evaluating and optimizing the defect
inspection sampling plan for an advanced semiconductor man-
ufacturing process. A Sample Planner is developed by KLA-
Tencor to assist in the development of cost-effective defect
inspection sampling strategies, and to provide an accurate
assessment of whether monitor reduction and/or elimination
should be pursued for cost savings. The results of the project
indicate that the costs due to defect excursions could com-
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TABLE III
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Prahbu et al. [32] 1994 * * *
Nurani et al. [33] 1995 * *
Kuo et al. [34] 1996 * * *
Kuo et al. [12] 1997 * *
Babikian and Engelhard [35] 1998 *
Williams et al. [36] 1999 * *
Williams et al. [37] 1999 * *
Langford et al. [38] 2000 * *
Nurani and Shantikumar [39] 2000 * * *
Lee et al. [40] 2001 * *
Wootton et al. [41] 2001 * *
Allebé et al. [42] 2002 * *
Lee [43] 2002 * *
Song-Bor et al. [44] 2003 * *
Sullivan et al. [45] 2004 * *
Moon et al. [46] 2005 * *
Boussetta and Cross [14] 2005 * *
Mouli [13] 2005 *
Shantikumar [47] 2007 *
Mouli et al. [48] 2007 * *
Bunday et al. [49] 2008 *
Veetil et al. [50] 2009 * *
Chen et al. [51] 2009 * *
Sahnoun et al. [52] 2010 * *
Sahnoun et al. [53] 2010 * * *
Good et al. [54] 2010 * *
Nduhura Munga et al. [55] 2011 * *

pletely eradicate any projected savings from monitor reduction
activities, due to the additional defect excursions that would
be missed by the reduced inspection sampling plan.

Wootton et al. [41] present a study performed between
KLA-Tencor and Motorola. The study consists in finding
the best sample criteria providing the best representation of
existing problems in the inspected wafers. The main draw-
backs of random selection are presented and the proposed
solution consists in adapting the sample size based on in-line
information and priority rules (defect size). Results indicate an
improvement of yield, analysis time, and sampling resolution
at Motorola.

Boussetta and Cross [14] analyze the key parameters that
have to be monitored for an efficient adaptive sampling plan.
Their results indicate three key parameters: The variance ratio,
the excursion frequency, and the normalized mean shift. They
propose a general adaptive sampling plan and recommend a
fab-wide strategy, a very good understanding of inspection
requirements, and capacity constraints for an efficient adaptive
sampling plan.

Song-Bor et al. [44], Sullivan et al. [45], Mouli et al. [48],
and Nduhura Munga et al. [55] present industrial deployments
of adaptive sampling plans in four different semiconductor
companies: TSMC, IBM Microelectronics, Intel Corporation,
and STMicroelectronics respectively.

Song-Bor et al. [44] at TSMC present a capacity-
dependence sampling strategy, based on the utilization rate of
the defect inspection tools capacity and on the WIP (Work-In-
Progress) management. If the utilization of defect detection
rises too high, then an automatic function that allows WIP
executing defect inspection is turned off temporarily and
another function that allows WIP skipping is turned on until
the utilization drops to the expected threshold pre-settled by
users. If the utilization of defect detection drops too low, the
function to force the WIP executing defect inspection is turned
on to bring back the utilization level up to the threshold.
Results indicate 10% enhancement in tool utilization compared
to the previous static sampling plan.

Sullivan et al. [45] present an adaptive sampling tech-
nique for overlay measurements. The technique is based on
a sampling capability ratio (CsK) analogous to the traditional
CpK index1. The difference between the process capability
(CpK) and the proposed CsK is in the selection of historical
data. The CpK is the process performance whereas the CsK
only considers data from lots that would have been available
for skipping through metrology. A skip lot sample plan is
implemented based on the results of the CsK. Results indi-
cate significant cost savings. However, authors do not give
percentage enhancement.

Mouli et al. [48] present an Adaptive Metrology Sampling
(AMS) based on a risk score evaluation. The concept consists
in weighting each lot and wafer within a lot to make metrology
sampling decisions and processing sequence (or priority) on
metrology tools. The score varies between 0 and 1 and it
is calculated based on Advanced Process Control (APC) and
Statistical Process Control (SPC) analysis and observations.
Results indicate a reduction of 30% of excursions without
increasing tool capacity or sampling rates.

Nduhura Munga et al. [55] present an adaptive sampling
strategy based on the real time computation of the material at
risk. In order to optimize the computational time, a Permanent
Index per Context (IPC) is developed to reduce risk compu-
tation by simple subtractions or additions. Results indicate a
risk reduction of more than 30% of material at risk compared
to the previous static sampling strategy.

Concerning the technical aspects of proposed solutions,
some papers are only rule-based while others are mathe-
matical based. Table IV summarizes different mathematical
techniques or approaches browsed in this review for the last ten
years.

An important point to note is that, among all papers that
present a mathematical technique or an algorithm, only three
indicate industrial deployments [45] [48] [55]. Most of the

1The CpK index is the process capability index. CpK takes into account
both accuracy (centering) and precision (dispersion) and helps to determine the
cause of failures and the need for changes in the product design, tooling, or the
manufacturing process. The larger CpK value, the greater the indication that
the process is consistently under control (is within specification limits) [56].
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TABLE IV

Mathematical Techniques or Approaches for Adaptive

Sampling Techniques

Algorithms or Mathematical Techniques
Babikian and Engelhard [35] Skip-Lot algorithm (CpK)
Nurani and Shantikumar [39] Explicit Search algorithm
Lee et al. [40] Self-Organizing Feature (SOFM) network
Lee [43] Artificial Neural Network (ANN)
Sullivan et al. [45] Skip-lot algorithm
Mouli et al. [48] Risk-Score evaluation algorithm
Chen et al. [51] Integer Linear Programming
Sahnoun et al. [52] Skip-Lot algorithm (risk reduction)
Sahnoun et al. [53] Skip-Lot algorithm (risk reduction)
Good et al. [54] Sampling Compensation Algorithm (SCA)
Nduhura Munga et al. [55] Permanent Index per Context (IPC)

papers only use simulations to validate models [12] [50] but
very few are industrialized.

Through papers surveyed for adaptive sampling strategies,
the specificities of semiconductor plants can be highlighted.
Most of the sampling techniques browsed in this review are
different. This is because of the specificity of each factory:
Lot or wafer management, data storage, production tool man-
agement or qualifications, IT infrastructure, expert knowledge,
company culture, etc. Therefore, the efficiency of a sampling
technique varies depending on its application [14] [33].

Compared to static sampling strategies, adaptive sampling
strategies offer two main advantages which lead to an increase
in yield. The first advantage is the quick response to process
variation by an increase of the number of lots to inspect when
the process is likely to be out-of-control. The second advantage
is a better use of metrology capacity by the reduction of
the number of lots to inspect when the risk reduction is
not significant or when the process is really under control.
However, some drawbacks can be pointed out regarding the
management of resources, the complexity of algorithms, and
industrial deployment. By modifying the number of lots to
sample (increasing or reducing this number depending on the
process state), the workload in metrology is no longer the
same throughout production. The complexity of algorithms is
such that the validation is most of the time performed through
simulation and algorithms are never industrialized. To tackle
the problems faced by adaptive sampling strategies, dynamic
or smart sampling strategies have been introduced.

IV. Dynamic Sampling

Dynamic sampling consists in selecting in real time the
best lot or wafer to measure depending on the production
state, metrology capacity, and the factory dynamics. The main
difference with adaptive sampling is that no rule is defined at
the start of production and the decision to sample or not a lot is
taken when the lot can be selected for metrology. The metrol-
ogy workload remains balanced contrary to adaptive sampling.
The objective is to measure the lot that brings as much
information as possible on both risk reduction and process
variation. In high-mix semiconductor plants, where more than
200 products can be run concurrently, dynamic sampling tech-
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Purdy et al. [57] 2005 * *
Lensing and Stirton [58] 2007 * *
Holfeld et al. [59] 2007 * *
Good and Purdy [60] 2007 * * *
Purdy et al. [61] 2007 * *
Kaga et al. [62] 2008 * * *
Jansen et al. [63] 2008 * * *
Hyung [64] 2008 * *
Sun et al. [65] 2008 *
Lin et al. [66] 2010 *
Dauzère-pérès et al. [67] 2010 * *

niques are seen as more suitable. Table V presents a survey of
dynamic sampling technique in semiconductor manufacturing.

The first research works have been published in 2005 and a
pioneer is this domain is M. A. Purdy who has authored or co-
authored most of the papers found in the literature. His works
include industrial deployments [57] [59] [60] [61] and a patent
can be found in [68]. Compared to adaptive sampling, dynamic
sampling is mainly mathematically-based because of decision
levels. Industrial deployments in semiconductor plants have
been achieved thanks to the computing power that has strongly
increased.

Among papers that indicate industrial deployments, Purdy
et al. [57] present a Dynamic Sampling System (DSS) that
combines a number of separate sampling rules into a single
sampling decision. The first step consists in removing all
sampling rates, i.e. making all lots measurable. For that, some
defect inspection operations are defined so that all lots can
enter the metrology queue. The next step consists in selecting
lots to add in the metrology queue and lots to skip depending
on the metrology capacity and on the information brought by
each lot. The selection of lots to introduce in the metrology is
performed based on an algorithm that analyses all rules (for
example metal etchers at 30%, plasma etch at 10%, and a
given product at 25%) and tries to ensure that each rule is
satisfied with the minimum overall sampling rate when there
are overlapping rules. The Last-In-First-Out (LIFO) principle
is also used to ensure that the lots most recently added to the
queue will be measured first. The aim is to give the greatest
probability that the measurement of the current lot will allow
for one or more other lots to be removed from the queue.
Results indicate that the DSS has been rapidly adopted within
the AMD company and only a small percentage of lots that
entered the metrology queue were removed.
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Lensing and Stirton [58], Holfeld et al. [59], and Purdy
et al. [61] present and discuss the fab-wide APC sampling
deployed within an AMD’s fab. This APC sampling system is
based on the algorithm introduced by Good and Purdy [60].
The algorithm aims at selecting the best wafers to measure
given a set of sampling rules that can be infeasible, by
assigning a penalty to each rule that is violated. This penalty
is chosen such that it is larger for critical rules. The problem
is written as a Mixed-Integer Linear Program (MILP) and the
best wafers to measure correspond to the set that minimizes
the sum of penalties. Results indicate rapid deployments within
the fab and increased product yields. However, authors do not
give comparisons with the previous system and percentage
enhancement in terms of risk or cycle time reduction.

Kaga et al. [62] and Jansen et al. [63] discuss the use
of design information to dynamically improve sampling for
defect review. Lin et al. [66] discuss the benefit of developing
a dynamic and intelligent sampling system in a semiconductor
manufacturing. Based on their experience, they point out
three main benefits of a dynamic sampling system: Sampling
stability, satisfactory coverage of in-line products, and com-
prehensive inclusion of process tools. Hyung [64] presents a
model that combines the cost of sampling with the perfor-
mance of control in terms of yield and cycle time. Tests are
performed on different areas such as CVD (Chemical Vapor
Deposition), PVD (Physical Vapor Deposition), and Photo-
Lithography. Results show that the performance of dynamic
sampling depends on the characteristics of the process. When
the process is very stable, dynamic sampling has no effects,
whereas it is effective when data have large step disturbances.

Sun et al. [65] present a scoring algorithm based on
weighted objectives to determine the optimal wafer sampling
for maximum coverage. The algorithm is a multi-stage ap-
proach. The first stage consists in setting up various numbers
of wafer samples and various numbers of equipment units
(chambers, chuck, bowl, etc.). The aim is to ensure that
all possible, but not redundant combinations of wafers are
captured. The second stage consists in using the scoring al-
gorithm to evaluate and determine the preferred wafer sample
based on pre-defined objectives and weighting factors. The
score is calculated by multiplying individual normalized scores
by associative weighted factors and summarizing them. The
last stage uses the second stage results and designs a set
of algorithms based on the number of experimental design
groups. This set of algorithms is used to select wafers in each
group. No industrial assessment is mentioned.

Dauzère-pérès et al. [67] present a sampling, scheduling,
and skipping algorithm to minimize risk dynamically. The
algorithm is based on a Global Sampling Indicator (GSI) that
gives a weight to each lot arriving at the measurement step
i.e. in front of metrology. This weight is computed based on
the lot history and on two key parameters, called Warning
Limit (WL) and Inhibit Limit (IL). The WL indicates when
the situation starts to become critical, and the IL corresponds
to the maximum risk that can be tolerated for each production
tool regarding the metrology capacity and production state. An
Integer Linear Programming is provided in [69], and helps to
compute the values of WL and IL depending on the production

TABLE VI

Mathematical techniques or approaches for dynamic sampling

techniques

Algorithms or Mathematical Techniques
Good and Purdy [60] Mix Integer Linear Programming (MILP)
Sun et al. [65] Risk Scoring Algorithm
Dauzère-pérès et al. [67] Global Sampling Indicator (GSI) algorithm

state. The sampling, scheduling, and skipping algorithm has
been embedded in a prototype and simulated with actual data
from STMicrolectronics. Results indicate that the risk can be
strongly reduced while keeping a limited number of measures.

Table VI summarizes the main mathematical techniques,
approaches or algorithms developed for dynamic sampling.

If the development of dynamic sampling is still recent in
semiconductor manufacturing, significant improvements are
reported compared to static and adaptive sampling. However,
dynamic sampling has some limitations. Depending on the
information brought by each lot, the throughput of different
production tools, and the availability of metrology tools, it
could be interesting to anticipate the arrival of lots. This means
selecting a lot before it is actually available for sampling, e.g.
lots being processed on production tools whose next step is
metrology. Such “predictive” sampling strategies will require
additional information on production flows.

V. Conclusion and Perspectives

In this paper, we surveyed the literature for sampling
techniques in semiconductor manufacturing. We discussed the
strengths and weaknesses of the techniques developed the past
twenty years for excursion monitoring and control. We focus
on the trade-off between yield and cycle time, i.e. reducing
the number of inspections without increasing the risk, and
detecting as quickly as possible potential excursions.

When comparing with other techniques, significant im-
provements from static to dynamic through adaptive sam-
pling techniques are noticed. Dynamic sampling takes into
account the factory dynamics and variability, and integrate
the available metrology capacity. This latter technique is
thus more suitable for modern and high-mix semiconductor
manufacturing [57] [59] [60] [61] [67], and is one of the keys
to increase yield without impacting cycle times. The challenge
for the future is in the development of “predictive” sampling
techniques that anticipate the arrival of lots. Lots could be
accelerated or prioritized. Various research avenues can be
explored regarding the delay between a process operation and
the next inspection step [70], the cycle time between the
process equipment and the inspection equipment, the number
of queues in front of inspection steps depending on the
recipe to be used, or the time of inspection depending on the
technology, the capability, or the process criticality.
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