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A B S T R A C T

A wealth of genetic, demographic, clinical and biomarker data is collected from routine clinical care of HIV
patients and exists in the form of medical records available among the medical care and research communities.
Machine learning (ML) methods have the ability to identify and discover patterns in complex datasets and predict
future outcomes of HIV treatment. We survey published studies that make use of ML techniques in HIV clinical
research and care. An advanced search relevant to the use of ML in HIV research was conducted in the PubMed
biomedical database. The survey outcomes of interest include data sources, ML techniques, ML tasks and ML
application paradigms.

A growing trend in application of ML in HIV research was observed. The application paradigm has diversified
to include practical clinical application, but statistical analysis remains the most dominant application. There is an
increase in the use of genomic sources of data and high performance non-parametric ML methods with a focus on
combating resistance to antiretroviral therapy (ART). There is need for improvement in collection of health re-
cords data and increased training in ML so as to translate ML research into clinical application in HIV
management.
1. Introduction

Machine learning (ML) is generating enormous buzz and gaining
importance in many domains. It has given birth to applications such as
self-driving cars, speech and language recognition, optical character
recognition, e-commerce online recommender systems, fraud detection,
email filtering and most recently precision medicine. This trend in
popularity of ML is driven by improvements in data collection and stor-
age, and advancement in computing power (processing, memory and
storage) over the past decade. Together, these two factors have spurred
the use of computers to tackle increasingly complex tasks [1,2].

Machine learning provides computers with the ability to learn
without being explicitly programmed. It uses complex algorithms and
techniques to recognize patterns in data in order to make predictions.
Over the past two decades, there has been a steady increase in the
medical research involvingML, progressing dramatically from laboratory
curiosity to a practical clinical application. This is largely attributed to
growing volumes of clinical, social, epidemiological, genetic and other
types of medical data that are overwhelming for humans to infer from
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and make decisions. Consequently, ML has been envisaged to improve
medical practice through “better decision-making, optimized innovation,
improved research/clinical trial efficiency, and new tool creation for
physicians, consumers, insurers, and regulators” [3–6].

HIV/AIDS remains one of the world's most significant public health
and developmental challenges. Despite tens of millions of AIDS related
deaths since the beginning of the epidemic in 1981, approximately 36
million people current live with HIV. Approximately 19 million people
with HIV are enrolled in routine care programs and receiving treatment
[7]. The management of HIV is complicated by the wide variability in
both host and viral genetic makeup, dozens of options of ART to chose
from, multiple opportunistic infections, demographic differences in dis-
ease progression and response to ART as well as socio-cultural differences
in acceptability and adherence to treatment, all of which necessitate
personalization of care and treatment [8].

A wealth of demographic, clinical and biomarker data is collected
from routine clinical care of HIV patients. This data exists in form of
medical records available among the medical care and research com-
munities. These large amounts of data make HIV research and treatment
niversity, Kampala, Uganda.
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a potential beneficiary of ML. The extent of ML application in HIV
research and treatment remains unclear. The purpose of this survey is to
explore the nature and trends in ML application in HIV/AIDS clinical
research and management.

2. Machine learning methods

The key goal of ML is to use an example dataset to map out the
characteristics that are most helpful in predicting an outcome of interest,
and apply those characteristics to accurately predict outcomes in a new
situations not previously encountered [9]. This is referred to as predic-
tion, a process made possible via Bayesian statistics which allows
learning a probability distribution from data and utilization of inverse
probability to infer the unknowns in future data [10].

A diverse array of machine-learning methods (models and algo-
rithms) has been developed to tackle the wide nature of tasks. These
methods are broadly classified into supervised and unsupervised
learning [11].

Supervised learning methods search for a function f(x) that predicts a
target/output variable (y) given a set of predictor/input variables(x).
The training data is called labeled data because it consists of (x,y) pairs of
variables. The inputs x may be simple vectors or more complex objects
such as texts, DNA sequences, molecular structures, images, graphs or
videos. Outputs (or labels) may include continuous outcomes or the more
common binary yes-or-no outcomes. Regression learning methods pre-
dict outcomes in a continuous spectrum while classification learning
methods predict outcomes of a categorical (binary) nature [11]. Abun-
dant research has been done on problems such as multiclass classification
(where y takes on one of more than 2 labels), multi-label classification
(where y is labeled simultaneously by several of the K labels), ranking
problems (where y provides a partial order on some set), and general
structured prediction problems (where y is a combinatorial object such as
a graph, whose components may be required to satisfy some set of con-
straints) [2].

A number of supervised learning methods have been developed.
These include multiple linear regression (M-LR), decision trees and for-
ests (DT, DF) [12], logistic regression (LR), support vector machines
(SVM) [13–16], artificial neural networks (ANN) [15–17], bayesian
classifiers (BC), classification and regression trees (CART) [18,19],
K-nearest neighbors (KNN) among others [20]. Ensemble methods
combine outputs of multiple independently trained weaker models to
make an overall prediction. The selection of the combination of weaker
learning methods is made in such a way as to maximize the prediction
power of the ensemble algorithm. Ensemble methods include boosting,
bootstrap aggregation (bagging), stacking/blending, random forests (RF)
[16,21] and their modifications [22].

On the other hand, unsupervised learning involves the analysis of
unlabeled (no distinction between input and output) data under as-
sumptions about the structural properties of the data (e.g., algebraic,
combinatorial, or probabilistic). Since there are no training examples
used in this process, the learning algorithm aims to identify patterns and
correlations in the given data. The main applications of these algorithms
include clustering and dimensionality reduction. Dimensionality reduc-
tion algorithms, including principal components analysis, manifold
learning, factor analysis, random projections, and autoencoders, identify
and eliminate redundancies in the data so as to remain with only the
variables that account for the most variability in the data. Clustering
algorithms partition data into coherent clusters and determine the par-
titioning rule for predicting clusters in future data. The K-means clus-
tering algorithm is the most commonly usedmethod [20]. Computational
complexity is a major concern in both clustering and dimension reduc-
tion since the datasets to exploit are large and unlabeled [2].

A third major ML paradigm is semi-supervised learning. Here, the
data is a mixture of small amounts of labeled and large amounts of un-
labeled training data. The algorithm learns the structures of the data from
the labeled examples and makes assumptions about the unlabeled data in
367
order to make predictions. Semi-supervised learning is useful when the
cost associated with labeling is too high to allow for a fully labeled
training process [8]. Semi-supervised learning is subclassified into
inductive learning whereby the goal is to learn from both the labeled and
unlabeled dataset to predict labels for future datasets and transductive
learning whereby the goal is to predict labels for the unlabeled portion of
the data [23].

A more recent category of ML called reinforcement learning involves
the algorithm discovering actions that yield the greatest rewards through
trial and error. The algorithm is trained to choose actions that maximize
reward. It is said to learn from past experiences and capture knowledge to
make accurate decisions [24]. The most common example is the markov
decision process [25].

In practice, current research and application blends unsupervised and
supervised categories of ML. The choice of MLmethod to use is guided by
the objectives of the analysis and the data available. Important data
considerations include the number of predictor variables/features
available in the data and quality of data. In general, a small but infor-
mative feature space results in higher generalizability of the model and
avoids overfitting [26] while improving data quality and greatly im-
proves the analysis. Therefore data preprocessing and feature selection,
in often using the unsupervised learning methods, are often the initial
steps in an ML analysis. The Feature selection process optimizes infor-
mation gain and minimizes overfitting. Whereas some supervised
learning algorithms (SVM) offer the advantage of sparsity and inherently
select the most predictive features, explicit feature selection methods
exist. These are broadly classified into filter methods (e.g. correlation
coefficient scores, chi square tests, information gain), wrapper methods
(e.g. step-wise covariate modeling, recursive feature elimination) and
embedded methods (regularization algorithms, LASSO, elastic net and
ridge regression) [27,28]. The extremely high dimensionality of biolog-
ical data such as protein and peptide sequences exposes the inadequacy
of the above feature selection methods during implementation of ML
based approaches. Hence the need for methods that reduce the dimen-
sionality of features so as to decrease computational running times while
increasing classification accuracy. For this purpose, feature encoding
techniques, which map original representations into new spaces, have
been developed. This mapping makes separation of classes easier by
condensing complex data patterns into fewer, easily manageable and
statistically significant forms which makes the subsequent classification
step easier and more accurate. A number of feature extraction methods
have been developed and evaluated. These include the orthonormal
encoding (OE), frequency based encoding (FE), Taylor's venn-diagram
(TVD), residual couple encoding (RC) and a combination of OE and
TVD [29,30].

Model training and validation may be done concurrently. A model is
trained on one dataset (training set) and its prediction performance
tested on another (test set). Prediction performance is a measure of how
well a method is able to give correct prediction on unseen data. Model
validation techniques include the holdout method, N-fold-cross-valida-
tion and bootstrap. With the holdout method, the data is conventionally
split into a training (for model building) and test set (for performance
evaluation) in a ratio of 2:1 respectively. In comparison, the N-fold-cross-
validation method randomly splits the data into k subsets where the k-1
sets of the data are used to train the model while the kth set is used to
assess the model's accuracy of prediction. The bootstrap method samples
with replacement from the dataset to create n new datasets (bootstrap
replicates). The replicates are used to test the model's predictive ability.
In both N-fold-cross-validation and bootstrap, the accuracy measures are
calculated as the average of all different validation cycles or bootstrap
replicates [11,31].

Model performance is gauged using measures of accuracy e.g. root-
mean-squared-error (RMSE), mean absolute error (MAR) and percent-
age prediction error (PPE) for regression with continuous numerical
outcomes. With the classification of categorical outcomes, the percentage
of correctly predicted observations, sensitivity and specificity, false
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positive rate (FPR) and false negative rate (FNR), receiver operator
characteristics (ROC) along with its area under the curve (AUROC) are
the commonly utilized measures of performance [11,32,33].

A number of software have been developed and utilized for ML an-
alyses. These include the statistical software R [34], Python, MATLAB
and other dedicated ML software (WEKA, OpenAI, among others).

3. Survey methodology

The scope of this survey was limited to HIV/AIDS clinical research
and medical care studies that utilized machine learning methodology.
Clinical research was defined as any web-based, hospital based, social,
clinical, imaging, genetic or molecular laboratory research involving the
diagnosis and treatment of HIV/AIDS involving human participants or
data from human participants. This survey aimed to establish the trend in
application of ML techniques, the specific ML and clinical tasks involved,
the most commonly used ML methods, their application paradigms and
the appropriate data types and sources.

A focused search including all articles published online up to 11:59
p.m., 31st September 2017 and indexed in the PubMed biomedical
database was conducted. PubMed database was chosen to limit the
search to literature that is most likely to be accessed and applied by
medical and health workers. The specific query search term used
was‘(((((HIV patients) OR HIV-infected patients) OR HIV clinic) OR HIV
medical records)) AND (((((((((((random forests) OR (classification and
regression trees)) OR artificial neural networks) OR neural networks) OR
support vector machines) OR SVM) OR bayes classifier) OR semi-supervised
learning) OR supervised learning) OR unsupervised learning) OR machine
learning)’. Studies in which HIV was neither the only nor the main disease
of concern were excluded. Likewise, studies that used only the conven-
tional statistical methods (e.g. t-test, chi-square, Cox regression) instead
of ML methods in the analysis were excluded.

The search retrieved 115 publications out of which 39 were outside
the scope of this survey (did not directly address HIV disease, or did not
use ML methods, or did not directly involve human participants or data
from human participants) and were thus eliminated from the survey. The
remaining 76 publications were further categorized according to para-
digm of ML application using a criterion adapted from Ref. [35]
as follows:

1. Studies that review and summarize literature on the application and
challenges of ML in HIV clinical research – (review).
Fig. 1. Trend in PubMed indexed studies that employ ML techniques in HIV clinical resea
the publications. EMR-electronic medical records (all clinical data about signs and symptom
clinical laboratory data. GENETIC-human or pathogengenes, gene products, variants, phenotyp
data. (For interpretation of the references to colour in this figure legend, the reader is referred
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2. Studies that utilized ML in the analysis of data to identify factors
associated with outcomes of interest- (analysis).

3. Studies that demonstrate usable ML based tools and applications for
clinical use to improve clinical care and research – (demonstration).

4. Studies that evaluate and use ML in the clinical diagnosis and man-
agement of HIV – (application)

5. Studies that present development of new ML methodologies, algo-
rithms as well as new techniques improving on or enhancing already
existing one – (development).

6. Studies that compare predictive performance of more than one ML
techniques in HIV research – (comparison).

Additionally, the specific ML methods used the source and nature of
data, the specific supervised learning task (Classification versus regres-
sion) and clinical objectives of each publication were extracted and
summarized.

4. Key survey findings

An increase in the application of ML in published HIV clinical
research from 1 publication in 1995 to 10 publications in 2016 was
observed as shown in Fig. 1. While patient medical data was the primary
source in earlier publications, a gradual diversification in data sources is
observed, with genetic and imaging data becoming more common
(Fig. 1). Overall, genetic data was the most common source (50%) fol-
lowed by EMR (32.05%), imaging (5.13%), laboratory (3.85%) and other
sources (16.67%). However, in most of the studies host or viral genetic
profiles, clinical and social-economic variables and sometimes epidemi-
ological variables were utilized in a complementary manner as
model inputs.

The most commonly applied method was SVM (27.85%), followed by
ANN (25.35%), LR (12.66%), CART (11.39%), RF (10.39%), LDA
(2.53%) and other methods together (22.78%). A number of studies
employed more than one method. Artificial neural networks and LR were
the primary methods used in earlier publications but were gradually
overtaken by SVM and RF together with custom made methods (Fig. 2).
The most frequent ML task was classification (91.8%) followed by
regression (6.3%) and unsupervised leaning methods for dimension
reduction (1.9%). The publication that utilized unsupervisedmethods for
dimension reduction did not subsequently implement any supervised
learning task [36].

Five of the publications were review articles discussing the
rch and care (n ¼ 79). The different colors depict the different data sources used in
s of patients). IMAGING - radiological and other imaging data from patients. LAB –

es. OTHER-any other source of data including epidemiologic surveys, internet data, social
to the web version of this article.)



Fig. 2. Trend in ML methods employed in published HIV clinical research and care.

K.R. Bisaso et al. Computers in Biology and Medicine 91 (2017) 366–371
application of ML in optimization of HIV clinical research and treatment.
The largest proportion of studies (41.77%) utilized ML methods for data
analysis to identify predictor variables. Reports of clinical application of
ML tools in form of web-servers, websites or software to assist scientists
and clinicians in research and management of HIV patients were the least
(7.59%). However, most of the studies fell in more than one category of
ML application paradigm. More than 25% of the studies addressed
resistance to ART. A gradual increase in development and clinical
application of ML tools was observed. However, the volume of publica-
tions that utilized of ML for data analysis to identify predictive factors is
still larger than that of publications using ML for clinical applica-
tions. (Fig. 3).

All studies employed the well-known evaluation techniques of data
splitting during validation thus ensuring accuracy and reliability of the
predictions made in these studies.

5. Discussion

Machine learning systems are expected to improve the speed and
accuracy of diagnosis and clinical decision making among physicians
thereby reducing costs, saving time and improving patients' health [5]. In
this survey, we investigated the trend in application of ML to improve
HIV clinical research and care.
Fig. 3. Trend in patterns of application of ML in
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Before the year 2000, published applications of ML focused on
characterizing and predicting progression of HIV disease to AIDS (sup-
plementary Table 1). However the studies utilized clinical data and
application was limited to analysis and discovery of factors predicting
disease progression. This choice of data and paradigm of ML mirrors the
emphasis on prevention of opportunistic infections and AIDS progression
in the pre- ART and pre-treatment guideline era of HIV management
[37]. In addition, technology for genotyping was still very expensive and
not wide spread.

The mass rollout of antiretroviral therapy (ART) in the early 2000s
tremendously reduced mortality due to acquired immunity deficiency
syndrome (AIDS) and improved quality of life. Unfortunately, the
increased availability of ART coincided with emergency and spread of
resistance to ART, currently between 5 and 10% and growing [38].
Resistance occurs when HIV virus undergoes mutations making it less
susceptible to components of ART often resulting in virological failure.
The slow pace of discovery of new effective anti-retroviral drugs has led
to an increase in efforts to curb resistance such as resistance testing,
optimization of choice of ART combination, improving adherence to ART
and other interventions. Thus it is not surprising that an increase in
application of ML to combat resistance to ART was observed in
this survey.

As high-throughput sequencing technology became cheaper andmore
published HIV clinical research and care.
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available in clinical settings, the use of genomic, proteomic, metabolomic
and other such data with high information content has overtaken the use
of clinical and other sources of data. Most data from EMRs are still
extraordinarily messy, incomplete (having missing variables), incorrect
(systematic random errors in the data), sparse (due to rare and unrep-
resentable patient records) and vague in terms of variable selection [4].
Indeed, some have described medical data as not being “big data” but
“small data” arriving and changing quickly [39]. As observed in this
survey, the solution to this problem has been to aggregate multiple types
and sources of data during analysis so as to improve the predictive per-
formance [40,41]. However, genetic data will likely remain the dominant
source of ML data until such a time when aggregation of EMR data across
health systems (or layers of health systems) to ensure completeness and
sufficient variability is achieved. The recent advancement in imaging
techniques such as high angular resolution diffusion imaging and resting
state functional magnetic resonance imaging (MRI), that provide
non-invasive yet fine-grained measures of biological structure and
functionality will lead an increase in application of imaging data [46].
Coupled with genetic data this lead to an expansion of imaging genomics
into HIV clinical research.

The availability of high information content data (genetic and im-
aging) could have necessitated the increased application of non-
parametric methods (SVM, RF, DT) and ensemble method that require
large amounts of data but result in higher predictive performance. The
ever reducing cost of computing together with growing sizes of data will
further buttress the use of such methods and warrant the development of
more such methods. Just like in most medical problems, HIV clinical
management mostly involves diagnosis or risk prediction. These are bi-
nary categorical tasks requiring classification machine learning tech-
niques. Indeed the most commonly used techniques in HIV research were
classification techniques.

The application of ML in the HIV related research is relatively young
i.e. less than 30 years (Fig. 1) and medical practice is largely guided by
evidence based practices whereby ideas and interventions are rigorously
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tested to demonstrate benefit beyond mere chance, often through ran-
domized controlled trials [42,43]. Therefore it is not surprising that most
of the studies surveyed here focused on use of ML for discovery of pre-
dictive factors instead of direct practical clinical application. Machine
learning is not about to replace human experts and as noted by Holzinger
[44], interactive ML requiring a human in the loop is a necessity. It will
however be important for clinicians to gain basic competence in the
development and application of ML. Such competence should be built to
combine both the quantitative modeling and the translational skills to
bridge the discipline of ML with decision making [45]. An imbalance due
to absence of either of the skills is likely to hinder the integration of ML
into routine patient management. The human resource scarcity will have
to be tackled in order to reap the benefits of ML in clinical management
of HIV.

6. Conclusion and recommendations

The application of ML techniques in HIV clinical research and care
was surveyed. A steady growth in the application of ML in HIV clinical
research was observed. Despite the dominance of statistical analysis as an
application paradigm, ML use is steadily diversifying to include practical
clinical tools to assist in clinical decision making. The use of high
dimension sources of data such as genomic data has overtaken other data
sources and this has been attended by an increase in use of high per-
formance non-parametric ML methods with a focus on combating resis-
tance to ART. An improvement in clinical data collection and storage as
well as ML training as a means to increase ML application in clinical care
are recommended.
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