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Abstract
Background and Objective: Previous works on pricing in cloud computing environments assumed cloud servers are homogeneous. The
assumption of homogeneous servers was not realistic and cannot accurately model practical deployment scenarios of cloud servers since
cloud providers deploy heterogeneous servers with different service rates and capacities. The objective of this study was to model a
pricing scheme for heterogeneous cloud computing servers based on response time and slowdown. Methodology: To overcome the
above challenge, this study proposed a pricing model for heterogeneous multiserver cloud computing system. Heterogeneous multiserver
cloud computing systems had different capacities in terms of service rate and processing power. The proposed pricing mechanism was
charged based on mean response time and mean slowdown. Mean slowdown was introduced as a performance metric because it was
representative of the size of all requests in the system unlike mean response time used in previous studies which was representative of
the size of requests which were larger in size and not representative of all requests. Queueing theory was employed to derive expressions
for revenue in terms of mean response time and mean slowdown. The performance of the heterogeneous multiserver system was
compared to homogeneous system using MATLAB. Results: Numerical results  showed  that  heterogeneous multiserver system
generated more revenue than homogeneous multiserver system especially at high load and high arrival rate values for both pricing
mechanisms based on response time  and  slowdown.  It  was  further  observed that more revenue generated when mean slowdown
was used as a charging metric than  when  mean  response  time was used, especially at high load values and high arrival rates.
Conclusion: Heterogeneous multiserver system generated more revenue than homogeneous multiserver system. In addition, mean
slowdown generated more revenue when used as a charging metric than mean response time.
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INTRODUCTION

Cloud computing has emerged as a vital practice for the
online provisioning of computing resources as services1,2. This
technology allows scalable on demand sharing of resources
and costs among a large number of end users. Cloud
computing enables end users to process, manage and store
data efficiently at very high speeds at reasonable prices.

A majority of technology experts expect that by 2020
most people will access software applications online and share
and access information through the use of remote server
networks using the cloud, rather than depending primarily on
tools and information housed on their individual personal
computers3.

Cloud computing providers offer many services to their
customers,  including infrastructure as a service (IaaS),
platform as a service (PaaS), software as a service (SaaS),
storage as a service (STaaS), security as a service (SECaaS), test
environment as a service (TEaaS), etc4.

In cloud computing, computing infrastructure and
services should always be available on computing servers
(which are distributed among all continents) to enable
companies access their business services and applications
anywhere in the world whenever they need to5.

Many definitions have been presented for cloud
computing6,7. According to the University of California at
Berkeley, “Cloud computing refers to both the applications
delivered as services over the internet and the hardware and
systems software in the data centers that provide those
services”8. Cloud computing comes from the use of a cloud-
shaped symbol as an abstraction for the complex
infrastructure it contains in system diagrams9,10.

One attractive cloud computing environment is a three-
tier structure, which consists of infrastructure vendors, service
providers and customers11. An infrastructure vendor maintains
basic hardware and software facilities12. A service provider
rents resources from the infrastructure vendors and provides
various services to customers. A customer submits a service
request to a service provider receives the desired result from
the service provider with certain service level agreement and
pays for the service based on the amount of the service and
the quality of the service.

Basically, a service level agreement (SLA) represents an
agreement between a customer and a provider to receive a
particular service provision13. SLAs contain quality of service
(QoS) parameters that must be maintained by a provider (e.g.
response time, bandwidth, storage, reliability, deadline,
throughput, delay and cost)14.

A service provider can build different multiserver systems
for different applications domains, such that service requests
of different nature were sent to different multiserver systems15.
Each multiserver system contains multiple servers that can be
devoted to serve one type of service request and application.
The configuration of a multiserver system was characterized
by two basic features, i.e., the size of the multiserver system
(the number of servers) and the speed of the multiserver
system (execution speed of the servers).

Pricing is a critical factor for organizations offering
services or products16. Customer behavior, loyalty to a provider
and the organization’s success was normally affected by how
the price was set. Pricing is the process of determining what
a service provider will receive from an end user in exchange
for their services. According to Weinhardt et al.17 cloud
computing success can be obtained only by developing
adequate pricing techniques. Therefore, developing an
appropriate pricing model will help achieve higher revenues.

Existing studies on pricing in cloud computing
environments assume cloud servers are homogeneous15,18,19.
Homogeneous cloud computing servers consists of same
storage capacity, processing power, energy supply and same
service rate. However, the real case scenario of cloud server
systems was not represented by homogeneous servers. Cloud
server systems consist of heterogeneous servers with different
service rates20. The need for increased heterogeneity in the
computing systems was partially as the need for high-
performance, highly reactive systems that interact with other
environments too21. Therefore, the motivation for developing
pricing models for heterogeneous multiserver systems stems
from the fact that pricing models based on homogeneous
multiserver systems cannot accurately represent current
deployment scenarios of cloud servers that deploy servers
with different service rates and capacities.

Relatedly several researches based on mean response
time to charge in cloud computing16,17,19 however, mean
response time tends to represent the performance of just a
few big requests since they count the most in the mean
because their response times tend to be highest22. In other
words an improvement in mean response time could imply
the performance of a few big requests has improved. Mean
response time was the total time a request spends in the
system and this includes, waiting time in the queue and
service time23.

Other parameters that could be used to charge in cloud
computing was mean slowdown24. Mean slowdown is the
ratio of mean response time to the size of the request25. The
advantages  of  mean  slowdown  over mean response time is
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that it is more representative of the performance of a larger
fraction of requests. Secondly, mean slowdown ensures that
a request’s mean response time is correlated to its size.

Wang et al.26 developed two distributed algorithms for
the net profit optimization, net profit optimization for divisible
jobs (NPOD) and net profit optimization for indivisible jobs
(NPOI). An indivisible job is a job that cannot be interrupted,
while a divisible job is one that can be interrupted. The
authors proved via simulations that the two algorithms can
increase revenues and reduce electricity costs by comparing
it to the largest job first (LJF) algorithm. However, the authors
considered only static job arrivals and departures. In addition,
they assumed that the servers at all data centers were
homogenous, which does not depict the real cloud server
deployment scenarios. The disadvantage of homogeneous
multiserver system was that it exhibits increased execution
time for several tasks with overall reduction in performance.

Mihailescu and Teo27 introduced a dynamic pricing
scheme for federated clouds, in which resources were shared
among many cloud service providers. The authors carried out
simulations to determine the efficiency of this approach by
comparing it to a fixed pricing scheme. They found that
dynamic pricing achieved better average performance with
increasing buyer welfare and numbers of successful requests.
However, fixed pricing achieved better scalability in the case
of high demand in the market.

In an effort to maximize revenue, Feng et al.19 scheduled
the cloud resources among different service instances
adaptively based on the dynamically collected information. In
their study, each service instance, a virtual machine associated
with a user, is modeled as a FIFO (first in first out) M/M/1/FIFO
queue system. The authors proposed two customer-oriented
pricing mechanisms; mean response time (MRT) and instant
response time (IRT), in which the customers are charged
according to achieved service performance in terms of mean
response time. The optimal number of servers required to
maximize profit were obtained.

The pricing mechanism proposed by Cao et al.15 is as:

(1)
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Where:
" = Service charge per unit amount of service 
Po = As given in Eq. 2
m = Number of servers
D = Load in the system
Po = Probability
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In a recent study, Cao et al.15 proposed an optimal
multiserver configuration for profit maximization in a cloud
computing environment. The authors assumed the
multiserver system to be homogeneous implying that the
servers are identical, in addition, mean response time was
used as the performance metric. However, homogeneous
multiserver system cannot capture the heterogeneity
exhibited by cloud servers28. Furthermore, profit maximization
based on mean response was representative of profit of
requests which were larger in size and not representative of all
requests. To overcome the above challenge, this study
proposed a revenue model which takes into consideration the
heterogeneity of the servers and charges according to
achieved service performance in terms of mean response time
or mean slowdown.

MATERIALS AND METHODS

This study used analytical methodology to evaluate the
performance of the proposed models. Analytical methodology
is a generic process combining the power of the scientific
method with the use of formal process to solve any type of
problem. An analytical model therefore is a set of
computational algorithms or formulae used to analyze
systems. Analytical models provide faster and more
computationally efficient methods of obtaining performance
measures.
In modeling revenue based on mean response time and

mean slowdown, queueing theory was used. Queueing
models are suitable in a variety of environments ranging from
common daily life scenarios to complex service and business
processes, operations research problems, or computer and
communication systems. Queueing theory has been
extensively applied to evaluate and improve system
behavior19,15. Specifically, this study used the M/Mi/m/FCFS
queue system, where M represents  Poisson  arrival  with 
mean arrival rate (λ) per request with exponentially distributed
inter arrival times. Poisson distribution best models random
arrivals into systems. Poisson probability  distribution23  is
given as:

(3)
xe

P(x) x 0, 1, 2,...
x!
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Where:
x = Number of arrivals in a specific period of time
λ = Average, or expected number of arrivals for the specific

period of time
e = 2.71828

Mi represents the service time for server i. The amount of
time dedicated to each request on each server is exponentially
distributed, with a service rate µi, where i = 1, 2, 3... m. The
number of parallel servers is m. The queue discipline for each
queue was first come first served. The server allocation policy
was fast server first (FSF). FSF policy is used to select which
server to be allocated a request whereas in each server,
requests were serviced using FCFS policy. The service intensity,
D is defined  as  the  ratio  of  arrival  rate  to  the service rate,
D = λ/µ. The last m represents the number of servers.

System model: A cloud service provider serves user’s requests
by using a multiserver system which was constructed and
maintained by an infrastructure vendor and rented by the
service provider. This study considers a heterogeneous
multiserver system where the service rate of each server was
different. Customers submit service requests to a service
provider and the service provider serves the requests by using
the multiserver system. Since the servers were heterogeneous,
the selection policy employed to select servers was fast server
first (FSF) and the scheduling policy in each server was FIFO.
The response time for each customer were determined and
mean slowdown calculated upon which the price was
charged.

This study considers a multiserver heterogeneous
queueing system in which the arrivals follow a Poisson process
with mean arrival rate 8 and exponentially distributed inter
arrival times. Poisson arrival rates were assumed since the
requests into the servers were random and memory less.
Memory loss was due to the fact that the arrival of the next
request does not depend on the arrival of the past requests.
The multiserver system maintains a queue with an infinite
capacity. The multiserver system was treated as an
M/Mi/m/FSF queueing system. The M/Mi/m/FSF queue model
was used to drive the mean revenue brought by a service
provision. There were m servers (i.e., blades/processors/cores)
with different service rates (measured by the number of
packets that can be executed per unit time) µm, (i = 1, 2... m)
for each of the m servers and the service times at each server
follows exponential distribution. Each request requires exactly
one server and the queue discipline was  first  come first
served (FCFS). This study also assumed that the servers were
ordered in decreasing service speed. This implies that the

customers were always served by the fastest servers, i.e., when
k<m customers were present, servers 1, 2... k were used.

The study formalized the resource allocation problem by
considering various parameters such as pricing mechanisms,
arrival rates, service rates and available resources. The model
metric used was revenue. Revenue was the income generated.
Revenue has been used in literature as a performance metric
to evaluate the performance of different pricing schemes15,18.
The revenue generated was expressed in terms of
performance parameters like task mean slowdown, i.e., the
ratio of the time taken to complete a task to the size of the
request, this includes task waiting time and task execution
time. The mean slowdown was the source of customer
satisfaction. A service provider should keep the mean
slowdown to a low level by providing enough servers and/or
increasing server speed and be willing to pay back to a
customer in case the mean slowdown exceeds certain limits.

The promised mean slowdown to complete a service was
expressed in the service level agreement. If the actual length
of a service was within the service level agreement, the service
could be fully charged. However, if the actual length of a
service exceeds the service level agreement, the service
charge could be zero. Therefore, longer length of service
implies that the service was not charged for. On the other
hand, the shorter the actual length of a service was, the
greater the service charge.

Derivation of revenue under heterogeneous multiserver
system in terms of response time: The heterogeneous
multiserver system consists of servers with different
capabilities   in   terms   of  general  purpose  processor, special
purpose processor, or a co-processor. The heterogeneous
multiserver system could be modeled using the M/Mi/m
queue system. In which case the first M denotes Markovian
and represents Poisson arrivals into systems, mi represents the
service rates for servers i = 1, 2... m. The service rates were
exponentially distributed and variable and depends on the
state i in which the system was. The allocation policy in the
system was fastest server first (FSF). The service rate is defined
as shown in Eq. 4:

(4)
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Fig. 1: State transition diagram for M/mi/m queue system

In this case, µ1>µ2> ...µm. This implies µ1 is the fastest
server and µm is the slowest server. Equation 5 formulated in
two ways when the system contains less than m jobs, in which
µi is a variable and when there are m or more jobs in the
system, in which case µi is a constant.

The state transition diagram for M/mi/m system is shown
in Fig. 1.

Define:

(5)
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When i = 1, the system was in state 1 and there was 1 job
present in the system and only one server was processing the
work (this server assumed to be the fastest). When i = 2, the
system was in state 2 and there were 2 jobs present in the
system and two servers were processing the work (the two
servers are assumed to be the fastest).

Using the state transition diagram in Fig. 1, determine the
probability of queueing (i.e. the probability that a newly
arriving service request must wait because all the servers were
busy). Under the stable conditions:

µ1P1 = λP0 from which:

(6)0
1

P1 P
µ




(µ1+µ2) P2 = λP1 from which:
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(µ1+µ2+µ3) P3 = λP2 from which:
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Expression in Eq. 6, 7 and 8 can be generalized into:

(9)
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Where:

mm = µ1+µ2+µ3+.... +µm

From Eq. 9, note that µ1 appears in all the denominators.
This implies that µ1 appears m times and thus has a great
influence on the probability. Similarly, the service rate µ2 has
the  second  largest  weight on the probability and appears
(m-1) times, µm which is the slowest service rate appears
once.

The probability Pi to find i jobs in the system is as follows:
If i<m:
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and:

m

m k
k 1

m µ


 

Using the fact that all probabilities Pi must obey the
relationship:
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In order to prevent the queue from growing indefinitely,
the system utilization: 
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Substituting D into Eq. 13 leads to the following
expression for Po:
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Finally:
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To find the average number in the queue or execution, it
is necessary to find its expectation (Lq):
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Let k = i-m:
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Using little’s law, the average task response time is:

(25) 
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The mean revenue G brought by a service provision is
derived from Cao et al. 15 as:

(26) 
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Where a is the service charge per unit amount of service
and Po is as given in Eq. 17. Derivation of revenue under
homogeneous multiserver system in terms of mean slowdown

In this section, the expression for revenue in terms of
mean slowdown was derived. Using the expression for the
average task response time given in Eq.  25 and the definition
of mean slowdown being the ratio of average task response
time to the size of the request, the expression for mean
slowdown can be given as !/x, where x is the size of the
request. x can also be expressed as the reciprocal of average
service rate, 1/µ. Therefore, mean slowdown is given as:

(27)
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Basing on pricing model in Cao et al.15, the mean revenue
G brought by a service provision is given as:

(28)
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Where:
a = Service charge per unit amount of service 
Po = As given in Eq. 17

Derivation of revenue under heterogeneous multiserver
system in terms of mean slowdown: In this section, the
expression for revenue under heterogeneous multiserver
system in terms of mean slowdown is derived. Using Eq. 25
and the definition of mean slowdown being the ratio of
average task response time to the size of the request, the
expression for mean slowdown can be given as  !/x,  where x

is the size of the request. x can also be expressed as the
reciprocal of average service rate, 1/µ. Therefore, mean
slowdown is given as:
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Basing on pricing model in Cao et al.15, the mean revenue
G brought by a service provision is:
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Where " is the price constant and Po is as given in Eq. 17.
The price constant is the service charge per unit amount of
service15. Next, the performance of the derived models was
evaluated.

RESULTS

The basic mathematical symbols and the evaluation
parameters  that were used in this study were presented.
Table 1 shows the basic mathematical symbols used in the
analysis.

Table 2 shows the evaluation parameters used in the
analysis. The number of servers has been fixed to 5 to ensure
that the total service rate for both homogeneous and
heterogeneous  servers  were  the  same and to ensure that
the difference  in  performance  was  not  brought  by  the  fact 

Table 1: Basic mathematical symbols used in the analysis
Parameter Meaning
λ Mean arrival rate of requests
" Service charge per unit amount of service 
µ Mean service rate of requests
ρ System utilization
m Number of servers

Table 2: Evaluation parameters
Parameter Value
Servers in homogeneous multiserver system 5
Servers in heterogeneous multiserver system 5
Packet arrival rate 0-14 packets secG1

Service rate for homogeneous multiserver 3 packets secG1

Service rates for heterogeneous multiserver 1, 2, 3, 4, 5 packets secG1

Price constant for service instance, a 10 cents 
Total service rate for all servers 15 packets secG1
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Fig. 2: Variation of revenue with load for homogeneous and
heterogeneous multiserver systems in terms of mean
response time

Fig. 3: Variation of revenue with arrival rate for homogeneous
and heterogeneous multiserver systems in terms of
mean response time

Fig. 4: Variation of revenue with load for a heterogeneous
multiserver system in terms of mean response time

that the total service rate for each type of servers was
different. That was, the total service rate for 5 homogeneous
servers   each  with  a  service  rate  of  3  requests  secG1  was
15 packets secG1, while the total service rate for 5
heterogeneous  servers  with  service  rates   of   1,   2,   3,    4,
5 packets secG1 was also 15 packets secG1.

The monetary unit “cent” in this study may not be
identical but should be linearly proportional to the real cent in
US dollars15.

Comparison of homogeneous and heterogeneous
multiserver systems in terms of load and arrival rate: In this
study, the variation of revenue with load and arrival rate for
homogeneous and heterogeneous multiserver systems were
investigated.

Figure 2 and 3 shows a graph of revenue as a function of
load and arrival rate for homogeneous and heterogeneous
multiserver systems. Equations 1 and 26 were used to plot the
graphs. It was observed that revenue increases with increase
in load as well arrival for both homogeneous and
heterogeneous multiserver systems. This was due to the fact
that as the load in the system increases, there was increased
number of requests to be processed and hence more revenue
generated. The reason for the increase in arrival rate is same as
discussed by load. It was further observed that homogeneous
multiserver system generates more revenue than
heterogeneous multiserver system for low load values less
than 0.5, however, for load values greater than 0.5 the
heterogeneous multiserver system generates more revenue
than homogeneous multiserver systems. The difference in
revenue was more pronounced at higher load values.

It was also observed that for low arrival rate values, the
revenue generated from homogeneous and heterogeneous
multiserver systems are almost the same, however, as the
arrival rate increases the revenue generated from
heterogeneous multiserver system was higher than revenue
generated from homogeneous multiserver system. The
difference in revenue was higher at higher arrival rate values.

Variation of revenue with load and arrival rate in terms of
mean response time: In this study, the effect of increasing
number of servers on revenue for a heterogeneous multiserver
system in terms of mean response time was investigated.

Figure 4 and 5 shows a graph of revenue as a function of
load and arrival rate. In doing this, Eq. 26 was used to plot the
graph. It was observed that revenue generally increases with
increase in load and arrival rate for both considered number
of servers. This was due to the fact that as the load increases,
the number of requests to be processed also increases thereby
generating more revenue. Similarly, when arrival rate
increases, the number of requests in the system also increases
and generates more revenue. It was further observed that for
low load and arrival rate values, revenue generated was
almost the same for both considered number of servers,
however, as the load and arrival rate increases the revenue
generated was higher for higher number of servers as
compared to lower number of servers. This observation
implies that deploying higher number of servers was more
effective at higher load and arrival rate values.
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Fig. 5: Variation of revenue with arrival rate for a
heterogeneous multiserver system in terms of mean
response time

Fig. 6: Variation of revenue with load for a heterogeneous
multiserver system in terms of mean slowdown

Fig. 7: Variation of revenue with arrival rate for a
heterogeneous multiserver system in terms of mean
slowdown

Variation of revenue  with  load  and  arrival  rate  in terms
of mean slowdown: In this study, the effect of increasing
number of servers on revenue for a heterogeneous multiserver
system in terms of mean slowdown was investigated.

Figure 6 and 7 shows a graph of revenue as a function of
load and arrival rate for heterogeneous multiserver system in
terms of mean response time. Equation 30 was used to plot
the graph of revenue as a function of load and arrival rate. It
was observed  that  revenue  generally  increases with increase 

Fig. 8: Variation of revenue with load for a homogeneous
multiserver system in terms of mean response time and
mean slowdown

in load and arrival rate for both considered number of servers.
The increase in revenue was due to the fact that as the load
increases, the number of requests to be processed also
increases thereby generating more revenue. Similarly, the
increase in revenue with arrival rate can be explained by the
fact that as the arrival rate increases, the number of requests
to be processed also increases hence leading to increase in
revenue. It was further observed that for low load and arrival
rate values the revenue generated was almost the same for
both considered number of servers, however as the load and
arrival rate increases the revenue generated was higher for
higher number of servers as compared to lower number of
servers. This same trend is observed for mean response time.

Variation of revenue with load and arrival rate for a
homogeneous multiserver system in terms of mean
response time and mean slowdown: In this study, the
variation of revenue with load and arrival rate for a
homogeneous multiserver system in terms of mean response
time and mean slowdown was investigated. 

Figure 8 and 9 shows a graph of revenue as a function of
load and arrival rate for a homogeneous multiserver system
charged based on mean response time and mean slowdown.
Equation 1 and 28 were used to plot the graph. It was
observed that revenue generally increases with increase in
load and arrival for both mean response time and mean
slowdown. The increase in revenue was due to the fact that as
the load and arrival rate increases, the number of requests
being processed also increases hence leading to increase in
revenue. It was also observed that more revenue was
generated when a homogeneous multiserver system was
charged based on mean slowdown than when it was charge
based on mean response time. More revenue was generated
using mean  slowdown  as  a  charging  metric  due  to the fact
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Fig. 9: Variation of revenue with arrival rate for a
homogeneous multiserver system in terms of mean
response time and mean slowdown

Fig. 10: Variation of revenue with load for a heterogeneous
multiserver system in terms of mean response time
and mean slowdown

Fig. 11: Variation of revenue with arrival rate for a
heterogeneous multiserver system in terms of mean
response time and mean slowdown

that mean slowdown takes into account the size of the
requests while charging whereas mean response time does
not take into account the size of requests.

Variation of revenue with load and arrival rate for a
heterogeneous multiserver system in terms of mean
response time and mean slowdown: This study investigated
the variation of revenue with load and arrival rate for a

heterogeneous  multiserver  system in terms of mean
response time and mean slowdown.  In  doing this, the effect
of using mean response time and  mean slowdown on
revenue for a heterogeneous multiserver system was
analyzed.

Figure 10 and 11 shows a graph of revenue as a function
of load and arrival rate for a heterogeneous multiserver system
charged based on mean response time and mean slowdown.
Equation 26 and 30 were used to plot the graph. It was
observed that revenue generally increases with increase in
load and arrival rate for both mean response time and mean
slowdown. The increase in revenue was as a result of increased
number of requests in the system due to increase in load and
arrival rate. It was also observed that for low load and arrival
rate values the difference in revenue between the charging
metric based on mean slowdown and mean response time
was low, however as the load and arrival rate increases the
difference in revenue between the two charging metrics was
higher.

DISCUSSION

Previous studies on pricing mechanisms assumed the
multiserver system to be homogeneous implying that the
servers were identical19,15. However, the limitations of the
above works are that the usage of heterogeneous servers was
not taken into account in cloud networks which does not
represent the real case scenario of cloud server systems. This
study proposed a model for a heterogeneous multiserver
cloud computing system in which the heterogeneity of the
servers were taken into consideration in order to represent
real case scenario of cloud server systems. The numerical
results obtained from the derived models showed that
revenue generated for heterogeneous multiserver system was
higher than  for  homogeneous  multiserver  system  proposed
by Feng et al.19, Cao et al.15, Anselmi et al.29, Niyato et al.30 and
Nan et al.31. Heterogeneous multiserver systems generated
more revenue because they have high-performance and
highly interact with other environments. It was also observed
that more revenue was generated when mean slowdown was
used as a charging metric than when mean response time was
used as a charging metric for both homogeneous and
heterogeneous servers especially at high load values and high
arrival rates. More revenue was generated using mean
slowdown as a charging metric due to the fact that mean
slowdown takes into account the size of the requests while
charging whereas mean response time does not take into
account the size of requests.
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CONCLUSION

This study derived models for revenue for heterogeneous
multiserver system in terms of mean response time and mean
slowdown. The performance of the proposed revenue models
are compared with the homogeneous revenue model. The
numerical results obtained from the derived models show that
heterogeneous multiserver system generates more revenue
than homogeneous multiserver system. It is also observed that
more revenue is generated when mean slowdown is used as
a charging metric than when mean response time is used. The
study analyzed only the heterogeneous multiserver system
with one class of customers. In future, it can be interesting to
extend the model to multiple classes of customers where
some customers have priority over other customers. 

SIGNIFICANCE STATEMENTS

This study discovers the possible ways of modeling
revenue for heterogeneous multiserver cloud computing
systems  and  pricing scheme based  on  mean  slowdown. It
is expected that this study will help researchers to uncover
possible ways of modeling revenue for heterogeneous
multiserver cloud computing systems and new ways of
charging cloud computing clients.

REFERENCES

1. Al-Roomi, M., S. Al-Ebrahim, S. Buqrais and I. Ahmad, 2013.
Cloud computing pricing models: A survey. Int. J. Grid Distrib.
Comput., 6: 93-106.

2. Lochan, V.B. and N.K. Gupta, 2015. Dynamic business model
outsourcing for data integrity in clouds. Int. J. Curr. Eng.
Technol., 5: 935-941.

3. Garimella, S., N. Garg and Vikasdeep, 2012. Features, benefits,
futuristic projections of cloud and intercloud extensions to
the NET. Int. J. Innov. Eng. Technol., 1: 23-30.

4. Buyya, R., D. Abramson, J. Giddy and H. Stockinger, 2002.
Economic  models  for  resource management and
scheduling in grid computing. J. Concurr. Commun. Pract.
Exp., 14: 1507-1542.

5. Gorelik, E., 2013. Cloud computing models. Master's Thesis,
Massachusetts Institute of Technology, Engineering Systems
Division, Cambridge, MA., USA.

6. Foster, I., Y. Zhao, I. Raicu and S. Lu, 2008. Cloud computing
and grid computing 360-degree compared. Proceedings of
the Grid Computing Environments Workshop, November 12-
16, 2008, Austin, TX., USA., pp: 1-10.

7. Vaquero, L.M., L. Rodero-Merino, J. Caceres and M. Lindner,
2009. A break in the clouds: Towards a cloud definition. ACM
SIGCOMM Comput. Commun. Rev., 39: 50-55.

8. Etro, F., 2009. The economic impact of cloud computing on
business creation, employment and output in Europe. An
application of the endogenous market structures approach
to a GPT innovation. Rev. Bus. Econ. Lit., 54: 179-208.

9. Acharjya, D.P., S. Dehuri and S. Sanyal, 2015. Computational
Intelligence for Big Data Analysis: Frontier Advances and
Applications. Springer International Publishing, Switzerland,
ISBN-13: 9783319165981, Pages: 267.

10. Uma,  V.  and  V.J. Suseela, 2014. Current Practices in
Academic Librarianship. Allied Publishers Pvt. Ltd., India,
ISBN-13: 9788184249422, Pages: 268.

11. Lee, Y.C., C. Wang, A.Y. Zomaya and B.B. Zhou, 2010. Profit-
driven service request scheduling in clouds. Proceedings of
the 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, May 17-20, 2010, Melbourne,
Australia, pp: 15-24.

12. Popovici, F.I. and J. Wilkes, 2005. Profitable services in an
uncertain world. Proceedings of the ACM/IEEE Conference on
Supercomputing, November 12-18, 2005, Seattle, WA., USA.,
pp: 36.

13. Sahal, R., M.H. Khafagy and F.A. Omara, 2016. A survey on SLA
management  for cloud computing and cloud-hosted big
data analytic applications.  Int.  J.  Database  Theory Applic.,
9: 107-118.

14. Firdhous, M., S. Hassan and O. Ghazali, 2013. Monitoring,
tracking and quantification of quality of service in cloud
computing. Int. J. Scient. Eng. Res., 4: 112-117.

15. Cao, J., K. Hwang, K. Li and A.Y. Zomaya, 2013. Optimal
multiserver configuration for profit maximization in cloud
computing. IEEE Trans. Parallel Distrib. Syst., 24: 1087-1096.

16. Dutta, S., M.J. Zbaracki and M. Bergen, 2003. Pricing process
as a capability: A resource-based perspective. Strategic
Manage. J., 24: 615-630.

17. Weinhardt, C., A. Anandasivam, B. Blau, N. Borissov, T. Meinl,
W. Michalk and J. Sto$er, 2009. Cloud computing-a
classification, business models and research directions. Bus.
Inform. Syst. Eng., 1: 391-399.

18. Zhang, L. and D. Ardagna, 2004. SLA based profit
optimization in autonomic computing systems. Proceedings
of the 2nd International Conference on Service Oriented
Computing,  November  15-19,  2004,  New York, NY, USA.,
pp: 173-182.

19. Feng, G., S. Garg, R. Buyya and W. Li, 2012. Revenue
maximization using adaptive resource provisioning in cloud
computing environments. Proceedings of the 13th ACM/IEEE
International Conference on Grid Computing, Volume 13,
September 20-23, 2012, IEEE Computer Society Washington,
DC, USA., pp: 192-200.

20. Narman, H.S., M.S. Hossain and M. Atiquzzaman, 2014. h-
DDSS: Heterogeneous dynamic dedicated servers scheduling
in cloud computing. Proceedings of the IEEE International
Conference on Communications, June 10-14, 2014, Sydney,
NSW., Australia, pp: 3475-3480.

42



Australasian J. Comp. Sci., 4 (1): 32-43, 2017

21. Suri, P.K. and M. Sumit, 2012. A comparative study of various
computing processing environments: A review. Int. J.
Comput. Sci. Inform. Technol., 3: 5215-5218.

22. Downey, A.B., 1997. A parallel workload model and its
implications for processor allocation. Proceedings of the
International Symposium of High Performance Distributed
Computing,     August    5-8,    1997,    Portland,   OR,   USA.,
pp: 112-123.

23. Kleinrock, L., 1976. Queueing Systems, Volume 2: Computer
Applications.  John  Wiley  and Sons Inc., New York, USA.,
ISBN-13: 978-0471491118, Pages: 576.

24. Wierman, A., 2007. Scheduling for today's computer systems:
Bridging theory and practice. Ph.D. Thesis, Carnegie Mellon
University, Pittsburgh, PA., USA.

25. Rai, I.A. and M. Okopa, 2011. Modeling and evaluation of
swap scheduling policy under varying job size distributions.
Proceedings of the 10th International Conference on
Networks, January 23-28, 2011, St. Maarten, The Netherlands
Antilles, pp: 115-120.

26. Wang, W., P. Zhang, T. Lan and V. Aggarwal, 2012. Datacenter
net profit optimization with individual job deadlines.
Proceedings of the 46th Annual Conference on Information
Sciences and Systems, March 21-23, 2012, Princeton, NJ., USA.

27. Mihailescu,  M.  and  Y.M.  Teo, 2010. Dynamic resource
pricing on federated clouds. Proceedings of the 10th
IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, May 17-20, 2010,  IEEE Computer Society,
pp: 513-517.

28. Crago, S.P. and J.P. Walters, 2015. Heterogeneous cloud
computing: The way forward. Computer, 48: 59-61.

29. Anselmi, J., U. Ayesta and A. Wierman, 2011. Competition
yields  efficiency  in  load  balancing  games. Perform. Eval.,
68: 986-1001.

30. Niyato, D., E. Hossain and Z. Han, 2009. Dynamics of multiple-
seller and multiple-buyer spectrum trading in cognitive radio
networks: A game-theoretic modeling approach. IEEE Trans.
Mobile Comput., 8: 1009-1022.

31. Nan, G., Z. Mao, M. Yu, M. Li, H. Wang and Y. Zhang, 2014.
Stackelberg  game  for  bandwidth  allocation  in cloud-based
wireless   live-streaming   social   networks.    IEEE    Syst.    J.,
8: 256-267.

43


	aujcs.pdf
	Page 1




