
Quality Requirements in Agile as a Knowledge
Management Problem: More than Just-in-Time

Eric Knauss, Grischa Liebel

Computer Science and Engineering

Chalmers | University of Gothenburg

Gothenburg, Sweden

{knauss,grischa}@chalmers.se

Kurt Schneider

Software Engineering Group

Leibniz Universität Hannover

Hannover, Germany

ks@inf.uni-hannover.de

Jennifer Horkoff, Rashidah Kasauli

Computer Science and Engineering

Chalmers | University of Gothenburg

Gothenburg, Sweden

{jenho,rashida}@chalmers.se

Abstract—Just-in-time (JIT) approaches have been suggested
for managing non-functional requirements in agile projects.
However, many non-functional requirements cannot be raised
and met on the spot. In this position paper, we argue that
effective JIT engineering of quality requirements depends on
a solid foundation of long-term knowledge about all relevant
quality requirements. We present two examples from projects
related to safety and security and show that not all aspects
of these quality requirements can be invented and changed
just in time. Further, managing, for example, operationalization
of quality requirements just in time depends on sufficient
understanding of (i) customer value and (ii) the system under
construction that must be shared by the engineering team. If a
Learning Software Organization (LSO) intends to increase agility
and speed up system development, it needs a holistic concept
for managing this knowledge. We propose that a knowledge-
management framework can facilitate JIT-RE by structuring,
representing, and allowing updates of long-term knowledge about
quality requirements. Such a knowledge-management framework
should allow to map user value to system requirements and have
important properties to allow JIT RE and sustainable evolution.

Keywords-just-in-time RE, quality requirements, managing
requirements knowledge

I. INTRODUCTION

In this position paper, we argue based on our experience in

several projects that while just-in-time management of quality

requirements is important in agile development, it must be

complemented by an initiative to manage long-term aspects

of quality requirements and to build and use knowledge about

the system under construction.

Agile software development lacks systematic approaches

for managing quality requirements [10] and needs further

research, even though a variety of promising practices for

managing quality requirements are known [3]. Among those,

some relate to just-in-time aspects of quality requirements

engineering: relying on face-to-face communication and itera-

tive emergence of requirements [3]. Others imply a long-term

perspective on quality requirements, as for example product

grooming, continuous integration, and test-driven development

[3]. Yet, according to our experiences existing challenges of

managing quality requirements in agile development show an

inability to synchronize just-in-time RE activities and long-

term perspectives on architecture and system verification.

This is concerning: on the one hand, we need just-in-time

analysis of quality requirements to operationalize them for

functionality currently under development. On the other hand,

quality requirements can be considered long-term business

drivers that allow diversification from competitors [5]. An

agile team not only needs to care about the current release

or project, but also about the next [7].

Proposition 1 (JIT vs. Long-Term): We propose that JIT
management of quality requirements must be complemented by
an initiative to manage long-term aspects of quality require-
ments. In agile requirements engineering, a lot of emphasis

is on understanding and communicating customer and end-

user value [1]. This is important, since agile approaches

rely on self-organized teams with some autonomy [13] and

these teams need to understand what provides customer value,

before they can make decisions [11]. Pre-agile approaches to

requirements engineering emphasize the importance of distin-

guishing between user requirements and system requirements

[17] and this importance has been confirmed for requirements

engineering in large-scale agile system development [12].

Incremental agile development and continuous delivery do not

only require an excellent understanding of customer value,

but also effective knowledge about how and why the current

system was built. Consequently, many challenges reported for

agile management of quality requirements relate to a lack of

consideration of this system perspective in agile development,

e.g. focusing on delivering functionality at the cost of archi-

tecture flexibility as well as ignoring predictable architecture

requirements [3].

Proposition 2 (Customer value vs. System knowledge): We
claim that both JIT and long-term management of quality
requirements must consider both a user (or: market) value
perspective and a system requirements perspective. We argue

that most qualities cannot be significantly improved just-in-

time. While for example a single change can destroy security

or safety of a system, the only way to create a system that has

these properties is to grow it around a strong notion of the

most important qualities. The knowledge of how this has been

done must be conserved and must be made accessible for JIT

quality requirements activities.

In this position paper, we revisit well established knowledge

management literature with our two key propositions in mind.

2017 IEEE 25th International Requirements Engineering Conference Workshops

978-1-5386-3488-2/17 $31.00 © 2017 IEEE

DOI 10.1109/REW.2017.35

427

II. KNOWLEDGE MANAGEMENT FOUNDATIONS FOR

MANAGING QUALITY REQUIREMENTS

In this paper, we consider requirements engineering as a

knowledge management problem. Knowledge management ad-

dresses the acquisition of knowledge, transforming it from tacit

or implicit into explicit knowledge and back again, storing,

disseminating, and evaluating it systematically, and applying

it in new situations [16]. We see requirements as a special type

of knowledge, which needs to be managed in an organization.

Doing requirements engineering then relates to organizational

learning, which is an approach that stimulates learning of

individuals, organization-wide collection of knowledge, and

cultivation of infrastructure for knowledge exchange [16].

Nonaka’s and Takeuchi’s theory of knowledge creation

relates to tacit and explicit knowledge [14]1. Knowledge is

created by converting it from a knowledge source (either

tacit or explicit) to a new knowledge store (also either tacit

or explicit). This view relates very well to requirements

management, especially for quality requirements. For example,

conversion of tacit knowledge to tacit knowledge (socialization
in Fig. 1), corresponds to an agile way of managing require-

ments, that de-emphasizes documentation and instead relies

on face-to-face communication and just-in-time clarification of

requirements. A long-term perspective on requirements would

require explicit knowledge representations. Combination, for

example, corresponds to tracing information derived from

relating different artifacts of system engineering to each other.

Earl has developed a framework to classify studies on

knowledge management according to different research di-

rections, which he calls schools [8]. The technocratic school

focuses on systems, maps and engineering of knowledge and

resonates with a traditional approach to requirements engi-

neering with a central requirements database (or specification)

as knowledge base. In contrast, the economic school focuses

on commercial value of knowledge and the behavioral school

considers organizational, spatial, and strategic aspects. We note

that these latter schools resonate with values of agile RE.

III. EXAMPLE 1: SAFETY

Safety can be briefly characterized as the confidence that a

software or technical system will not harm humans or cause

major damage or financial loss. Airplanes or cars need to

ensure functional safety according to ISE 61 508 or ISO

26262. An autonomous driving system must ensure that the

intelligent breaks will not cause accidents.

In our project on Requirements Engineering for large-

scale agile system development [12], many case companies

develop safety critical systems and are subjected to regulation.

These companies struggle to establish an effective approach

to manage safety that still supports agile, incremental work.

Regulations often require comprehensive tracing information

that relates different system engineering artifacts to each other

1note that their notion of tacit knowledge differs from how this term is
usually used in RE research: for them, tacit knowledge is not explicitly
documented but can be shared in face-to-face communication.

Fig. 1: Conversions between tacit and explicit knowledge [14].

and allows to show how safety was systematically build into

the system. Further, in order to support incremental, agile

development, it is desirable to also allow for incremental

verification. For this and other reasons, safety must already

be considered during creating the system architecture, e.g. by

defining independent components, separating safety concerns

from others, and provide redundancies for critical components.

This requires long term system knowledge, mainly created

through combination (Fig. 1) of existing system artifacts.

Yet, there is always a risk to include a change that effectively

declines the safety of a component. This risk must be mitigated

just-in-time, for example by doing a change-impact-analysis

to understand which components will be affected and then

internalize the existing knowledge about the system under

construction. Such existing knowledge is usually provided by

existing engineering artifacts (in agile: code and its tests).

When a cross-functional team starts the development of a

new feature for a safety critical system, one of the first steps

is to do a hazard analysis. The result will inform the team

about the safety criticality of the feature, which in turn defines

the engineering method to be applied. In our experience,

practitioners often reach out to domain experts to help them

assess the system requirements efficiently, leading to emergent

collaboration. This activity can be considered to be just-in-time

and relies on internalization of existing system knowledge as

well as on socialization to discuss how the feature will affect

functional safety.

The foundation for such reasoning is long-term knowledge

about the desired (or required) level of safety. While this

knowledge might have been established at one time face-to-

face through socialization of domain experts, it is long-lasting

and reusable (i.e. the next product will relate to very similar

safety concerns). Thus, an efficient way of externalization of

this knowledge is required.

Today, this externalization is not emphasized in many ag-

ile system development approaches. Due to the long-lasting

nature of safety considerations of systems, existing documen-

tation can be reused after a company has transitioned from v-

model or waterfall approaches to agile. However, we argue that

updating and maintaining this knowledge must be considered

in any approach to agile system development.

428

Fig. 2: Three essential activities in managing knowledge on

software quality attributes.

IV. EXAMPLE 2: SECURITY

Security is defined as the ability of a system to withstand

attacks. In contrast to safety, security does assume an ad-

versary viciously attacking the software. Developers need to

anticipate and consider all potential attacks; in misuse-cases

[2], this antagonism between two sides is made explicit. This

externalization is often supported by attack trees.

Knowledge about vulnerabilities, past attacks, and many

other aspects of a software system is crucial for both sides.

If developers want to stay ahead of attackers, they need

to organize and use that knowledge. In the German DFG

Priority Programme 1593 (Design for Future), we work on

an approach for detecting vulnerabilities during requirements

analysis. This “SecVolution” approach is fundamentally built

on a knowledge-perspective of security [9, 6].

Security is a quality aspect of growing importance: Large

home entertainment systems may have been initially out of

scope for security, but when they collect payment information

or personal data, they suddenly become very security-relevant.

Supermarket management software may start out as a local

and non-distributed application of moderate size and limited

security relevance. When an online-store component is added,

software security definitely turns into a major concern. As

these examples indicate, security is far from a commodity that

can be added and removed at convenience. Instead, a single

known vulnerability can make the entire system insecure.

SecVolution investigates changes that can cause security to

suffer. The above-mentioned scenarios exemplify this type of

changes. However, there is an additional type of changes that

is not mentioned above but just as severe: Even if nothing in

the software changes, its security can suffer when attackers

discover a new security breach in the existing code, and

exploit it for an attack. A long-living system does not wear

out over time, but it ages in relationship to the knowledge

developers and attackers have about it. A core insight in

SecVolution was how crucial it is to externalize attacker and

security knowledge from people; automate it in a tool, and help

developers internalizing it when they see suspicious findings.

Highly qualified security experts are able to spot patterns of

Fig. 3: Towards a Knowledge Management Framework for Ag-

ile Quality Requirements Management: Aligning knowledge

conversion with our propositions.

payment, data, access, and the like. However, those experts are

rare and cannot check each and every document and use case.

A presumably unproblematic system, such as a supermarket

or smart TV, tends to be neglected in terms of security.

Thus, SecVolution tries to detect as many known suspicious

requirements and submit this much smaller list of requirements

to the rare experts for final resolution. In order to extract

knowledge from human-made natural language requirements,

we use natural-language processing techniques. After parsing

the sentence grammatically, we search for matching Security

Frames (i.e., suspicious patterns) and use an ontology to

represent the knowledge.

Techniques for soliciting and deriving explicit knowledge

from people who have internalized it can be very challenging

[9]. As a prerequisite, the collection of knowledge must be

maintained as a long-term endeavor and the interplay of de-

velopers, attackers, and security experts must be investigated.

V. TOWARDS A KM FRAMEWORK

Safety and security are examples of two quality require-

ments that cannot be managed purely JIT. We believe that

future research will show similar considerations to apply to

all quality requirements, since they are typically related to

architecture, and tend to build on knowledge as much as on

software structures, although both need to come together.

In the above-mentioned SecVolution case, an ontology plays

a central role of managing knowledge. Earlier experiences (of

attacks), external published warnings (of vulnerabilities), and

insights of security experts are encoded in the ontology, which

can then be applied to natural-language requirements (Fig. 2).

There are obvious technical challenges involved in building

such a knowledge infrastructure. It turned out to be at least

equally challenging to solicit, interpret, and engineer the

knowledge. Initially, most of that knowledge resides in people

and needs to be externalized [14] before it can be encoded and

stored in an ontology. Therefore, extracting implicit or even

429

Fig. 4: Life-cycle of experiences, iterating around exp. base.

tacit knowledge from people is essential and not just a side-

issue. Tapping human knowledge and experience is almost a

discipline by itself [16]. Making a knowledge management

infrastructure effective requires taking the social and socio-

technical challenges seriously. Based on these observations,

Schneider presents an experience life cycle [16] in software

engineering (Fig. 4): Activation and collection are devoted to

techniques and tools for attracting implicit or tacit knowledge

into the system. A purely technocratic view [8] tends to

neglect the left-hand input block. Along the same lines, many

experiences (or knowledge items collected) are never actively

disseminated. Thus, they remain useless. Experts need to be

made aware of the valuable knowledge they have (activate);

there must be support to collect that information once it

surfaces (collect, e.g. as a by-product of other tasks that need

to be conducted anyway [15]). Usually, the knowledge cannot

be collected in exactly the same form that is most appropriate

for reuse. Following Basili’s [4] terminology, we call the

activity of merging, comparing, and reformatting “experience
and knowledge engineering”. Finally, the resulting knowledge

must be delivered to where it is needed, when it is needed,

and in the most adequate form. In the SecVolution example,

knowledge ends up in an ontology and is automatically applied

to natural-language requirements. This is a very clear and

technically sophisticated way of distribution. In other cases,

knowledge will need to be presented to developers, requiring

them to understand and apply it.

Figures 3 and 4 sketch the core of a knowledge management

infrastructure for quality requirements: Fig 4 stresses the

iterative nature of experience or knowledge about a quality

aspect. Such an iterative process is applicable to JIT as well

as to long-term requirements. Fig. 3 highlights different types

of sources and the main knowledge operations conducted.

JIT and long-term requirements are not a contradiction, but

need to complement each other. We encourage future work

to investigate implications for other qualities and on RE

processes that support JIT RE based on long-term knowledge.

Acknowledgments. We thank Francisco Gomes for his

feedback and support. This work was supported by Software

Center (RE for Large-Scale Agile System Dev. Project) and

German DFG Priority Programme 1593 (Design for Future).

REFERENCES

[1] H. Alahyari, R. Berntsson Svensson, and T. Gorschek. A

study of value in agile software development organiza-

tions. Journal of Systems and Software, 2016.

[2] Ian Alexander. Initial Industrial Experience of Misuse

Cases. In Int. Reqts. Eng. Conf., pages 9–13, 2002.

[3] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. Qual-

ity requirements in large-scale distributed agile projects

– a systematic literature review. In Proc. of 23rd Int.
Working Conf. on Requirements Eng.: Foundation for
Software Quality, pages 219–234, Essen, Germany, 2017.

[4] V. Basili, G. Caldiera, and D.H. Rombach. The Experi-
ence Factory. John Wiley and Sons, 1994.

[5] Richard Berntsson Svensson and Björn Regnell. A case

study evaluation of the guideline-supported quper model

for elicitation of quality requirements. In Proc. of Int.
Working Conf. on Requirements Eng.: Foundation for
Software Quality, pages 230–246, 2015.

[6] Jens Bürger, Jan Jürjens, Thomas Ruhroth, Stefan

Gärtner, and Kurt Schneider. Model-based Security

Engineering with UML: Managed Co-Evolution of Se-

curity Knowledge and Software Models. In Foundations
of Security Analysis and Design VII: FOSAD Tutorial
Lectures, pages 34–53, 2014.

[7] Alistair Cockburn. Agile Software Development: The
Cooperative Game. Addison-Wesley, 2nd edition, 2009.

[8] M. Earl. Knowledge management strategies: Towards

a taxonomy. Journal of Management and Information
Systems, 18(1):215–233, 2001.

[9] Stefan Gärtner, Thomas Ruhroth, Jens Bürger, Kurt

Schneider, and Jan Jürjens. Maintaining Requirements

for Long-Living Software Systems by Incorporating Se-

curity Knowledge. In Proc. of 22nd Int. Reqts. Eng. Conf.
(RE), pages 103–112, 2014.

[10] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and

S. Shamshirband. A systematic literature review on

agile requirements engineering practices and challenges.

Computers in human behavior, 51:915–929, 2015.

[11] Rashidah Kasauli, Eric Knauss, Agneta Nilsson, and Sara

Klug. Adding value every sprint: A case study on large-

scale continuous requirements engineering. In 3rd WS
on Cont. Reqts. Eng. (CRE), Essen, Germany, 2017.

[12] Rashidah Kasauli, Grischa Liebel, Eric Knauss, Swathi

Gopakumar, and Benjamin Kanagwa. Requirements

engineering challenges in large-scale agile system devel-

opment. In Proc. of 25th Int. Requirements Engineering
Conf. (RE ’17), Lisbon, Portugal, 2017.

[13] Bertrand Meyer. Agile! The Good, the Hype and the
Ugly. Springer, 2014.

[14] I. Nonaka and H. Takeuchi. The Knowledge Creating
Company. Oxford University Press, 17th edition, 1995.

[15] Kurt Schneider. Rationale Management in Software
Engineering, chapter Rationale as a By-Product, pages

91–109. Springer, Berlin, Heidelberg, 2006.

[16] Kurt Schneider. Experience and Knowledge Management
in Software Engineering. Springer, 2009.

[17] Ian Sommerville. Software Engineering. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 8th

edition, 2006. ISBN 0321313798.

430

