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The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of
organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS)
atom-based quadratic indices are used to codify chemical information for a comprehensive
dataset of 2478 compounds having a great structural variability, with 1087 of them being
antifungal agents, covering the broadest antifungal mechanisms of action known so far.
The NS and SS index-based antifungal activity classification models obtained using linear
discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%,
respectively, for the training set. Additionally, these models are able to correctly classify
92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statisti-
cal parameters of the QuBiLs-MAS LDA-based models with those for models reported in
the literature reveals comparable to superior performance, although the latter were built
over much smaller and less diverse datasets, representing fewer mechanisms of action. It
may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful
in the design and/or selection of new and broad spectrum agents against life-threatening
fungal infections.

Keywords: QuBiLs-MAS software; atom-based quadratic indices; linear discriminant
analysis; QSAR model; virtual screening, antifungal agent

1. Introduction

In recent times, the incidence of life-threatening fungal infections has increased and is directly
related to the increase in the population of patients at risk of developing serious fungal infec-
tions, including those placed under major surgery such as solid organ and hematopoietic stem
cell transplantation, hemodialysis, or those with HIV infections, chemotherapy-induced
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neutropenia, advanced age and premature birth, as well as from the use of broad-spectrum
antibiotics and glucocorticosteroids [1–5].

Serious infections are not only produced by the well-known opportunists such as Candida
albicans, Cryptococcus neoformans and Aspergillus fumigatus, but also yeast-like fungi such
as Trichosporon spp., Rhodotorula spp. and Blastoschizomyces capitatus, hyaline molds such
as Fusarium, Acremonium, Scedosporium, Paecilomyces and Trichoderma species, zygomy-
cetes such as Rhizopus spp., Absidia spp. and Rhizomucor spp., and a wide variety of demati-
aceous fungi [3].

The intrinsic resistance, observed in some of these genera, to even new antifungal agents,
along with the development of resistance during treatment in others, is becoming a major
problem in the management of fungal infections [2]. Furthermore, the clinical utility of the
few classes of antifungal drugs on the market is limited by several shortcomings, such as the
lack of broad spectrum fungicidal activity, unfavourable routes of administration, severe side
effects and undesirable drug–drug interactions [6]. Therefore, novel effective antifungal agents
need to be discovered in order to cope with this situation.

Computer-aided drug design has emerged as an important strategy for the ‘rational’ search
of new chemical entities (NCEs) of therapeutic interest. Numerous reports on in silico meth-
ods for drug design have been published in the literature in recent years [7–13]. Indeed, many
pharmaceutical companies and academic institutions have reoriented their research to incorpo-
rate computational methods as a means of reducing the hit-to-drug timeline, to increase the
number of quality candidate drugs that make the transition from discovery to clinical develop-
ment and to reduce the attrition rate (currently 90%) of candidate drugs in the clinical stages
of the value chain [14]. Several approaches for the computer-aided molecular design and
high-throughput in silico screening (or virtual high-throughput screening) have been intro-
duced in the literature [15–20].

In recent years, there has been increasing interest in the search of NCEs with fungicidal
activity. To this effect, computer-aided drug design techniques based on quantitative struc-
ture–activity-relationship (QSAR) studies have played an important role. Unfortunately,
almost all the antifungal QSAR studies reported so far are based on rather limited databases,
considering only structurally related compounds with specific action modes or acting against
a single fungus species [21–25]. Therefore, most of the previous QSAR studies may be con-
sidered as local models based on a small-to-medium chemical space spectrum, with limited
capacity to predict the activity/inactivity of different ligands on specific molecular targets. As
a result, researchers interested in predicting the antifungal activity for a given series of com-
pounds need to use/develop many QSAR equations for the combinations of structurally
heterogeneous families of compounds to be studied.

Although some global QSAR equations have been developed in the past few years
[26–29], the main drawbacks of these equations are their reduced applicability domain and
the rather small diversity of chemical structural patterns considering the actual chemical
space. Therefore, the development of a single equation explaining the antifungal activity of
structurally heterogeneous series of compounds and covering a broad range of mechanisms of
action as possible is of major interest.

In this context, our research group has recently introduced a novel scheme, denominated
as TOMOCOMD–CARDD (acronym of Topological MOlecular COMputational Design–
Computer Aided ‘Rational’ Drug Design) able to generate 2D (topologic), 2.5 (3D-chiral) and
3D (topographic and geometric) molecular descriptors, based on application of the discrete
mathematics and linear algebra to chemistry. To this effect, atomic, group and atom-type, as
well as total linear, quadratic and bilinear molecular indices, have been defined in analogy to
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the linear, quadratic and bilinear mathematical maps, and these collectively constitute the
QuBiLS-MAS (acronym for Quadratic, Bilinear and Linear MapS based on Graph–Theoretic
Electronic-Density Matrices and Atomic weightingS) module of the TOMOCOMD–CARDD
suite [30–35]. The QuBiLS-MAS approach has been successfully applied to the prediction of
several physical, physicochemical and chemical properties of organic compounds [30, 31] and
in the screening of NCEs of therapeutic interests, e.g. tyrosinase inhibitors [36], anthelmintics,
antiprotozoals, antibacterial and antimalarial compounds, etc. [8, 9, 37–44]. The satisfactory
predictive ability of this ligand-based method is an indication that QuBiLS-MAS descriptors
codify important chemical information, and constitute a valuable tool in the drug discovery
process [8, 9, 37–42].

The main objectives of the present report are, firstly, to construct a large and structurally
diverse antifungal database for modelling the mechanisms of antifungal activity known so far
and, secondly, to develop classification models, using the QuBiLS-MAS descriptors and linear
discriminant analysis. Finally, the results of the current study are compared with those
reported in the literature to gain greater insight on the performance of the obtained antifungal
models.

2. Materials and methods

2.1 Chemical compound dataset

Though antifungal compounds exhibit enormous structural diversity and action modes, only a
small portion of that diversity has been explored for its pharmacological potential so far, and
there is thus little reason to believe that this potential has now run dry. For this reason a large
database comprising 2142 organic chemicals having a great structural variability, with 1087
of them being antifungal agents [6, 22, 27, 45–103] covering the broadest antifungal mecha-
nisms of actions known so far and the rest inactive ones (1055 compounds having other clini-
cal uses such as antivirals, sedative/hypnotics, diuretics, anticonvulsivants, hemostatics, oral
hypoglycemics, antihypertensives, antihelminthics, anticancer compounds and so on) was
constructed [104].

The dataset of antifungal agents (active compounds) was chosen considering the largest
representation of the action modes so far known, i.e. compounds interfering with cell wall
synthesis (chitin synthesis inhibitors such as polyoxins and nikkomycins, and ß-1,3 glucan
synthesis inhibitors such as echinocandins), agents interfering with membrane sterols (polye-
nes, azoles, allylamines and morpholines), protein (sordarins) and DNA synthesis inhibitors
(flucytosine and pentamidine analogs), as well as inhibitors of N-myristoyltransferase [105].
Several compounds reported as antifungals, but whose mechanisms of action is not known,
were also included.

2.2 Computational methods

Total and local (atom and atom-type), nonstochastic and stochastic quadratic indices were
computed over the kth ‘nonstochastic and stochastic graph–theoretical electronic-density matri-
ces’ Mk and Sk, respectively, for the molecules in the constructed dataset. In the atom-type
quadratic indices formalism, each atom in the molecule is classified into an atom-type (frag-
ment) such as heteroatoms, halogen atoms, aliphatic carbon chains, and aromatic atoms (aro-
matic rings). The mathematical basis and methodological explanation of this approach have
been reported elsewhere [30, 31, 38, 40]. In this study, specifically, we used the kth (k = 15)
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atom-type (heteroatoms: S, N, O) quadratic fingerprints, not considering and considering H-
atoms in the molecular pseudograph, respectively [qkL(�xE) and qkL

H(�xE)].
In this report, Pauling electronegativity [106] scale was used as the atomic weighting

scheme (molecular vector’s components). Finally, linear discriminant analysis was performed
to find the relationship between the antifungal activity and the quadratic fingerprints generated
with the QuBiLS-MAS software.

2.3 Chemometric method

Linear discriminant analysis (LDA) was performed using the forward stepwise procedure as a
strategy for variable selection [107]. For this experiment, STATISTICA software (version 6.0)
was employed. In this way, quantitative models with the following form were obtained:

P = a0q0(�x) + a1q1(�x) + … + anqn(�x) + an+1q0L(�x) + an+2q1L(�x) + …+ amqmL(�x) (1)

where P is the biological property (in this study P was designated as AFA, acronym of
anti-fungal activity), qn(�x), the nth total quadratic index, qmL(�x), the mth local quadratic index,
and an′s and am′s, the coefficients obtained by LDA (here, kth = nth or mth). The principle of
maximal parsimony (Occam’s razor) was taken into consideration as a strategy for model
selection. Accordingly, models having the highest statistical significance, but keeping as few
parameters as possible were selected.

The quality of the models was assessed by examining Wilks’ λ parameter (U statistic),
which takes values ranging from 0 (perfect discrimination) to 1 (no discrimination), the
square Mahalanobis distance (D2), which indicates the separation between active and inactive
groups, the Fisher ratio (F) and its corresponding p level [p(F)]. Finally, the calculation of
percentages of global good classification (accuracy), sensibility, specificity (also known as ‘hit
rate’), false positive rate (also known as ‘false alarm rate) and Matthews correlation coeffi-
cient (C) in the training and test sets were also used to evaluate the models [108].

The Randić method for orthogonalisation of descriptors was followed to avoid the exclu-
sion of descriptors, on the basis of their colinearity with other variables included in the model
[109–113]. As a first step, an appropriate order of orthogonalisation was considered following
the order in which the variables were selected from the forward stepwise search procedure of
the statistical analysis. The first variable (V1) is taken as the first orthogonal descriptor 1O
(V1), and the second one (V2) is orthogonalised with respect to it [2O(V2)]. The residual of its
correlation with 1O(V1) is that part of the descriptor V2 not reproduced by 1O(V1). Similarly,
from the regression of V3 versus 1O(V1), the residual is the part of V3 that is not reproduced
by 1O(V1), and it is labelled 1O(V3). The orthogonal descriptor 3O(V3) is obtained by repeat-
ing this process in order to also make it orthogonal to 2O(V2). The process is continually
repeated until all variables are completely orthogonalised and the orthogonal variables are
then used to obtain the new model. For this orthogonalisation procedure, the entire chemical
compound dataset was considered.

3. Results and discussion

3.1 Development of linear discriminant functions

The dataset was randomly split into multiple (10-fold) training set and test sets containing
1436 compounds (717 antifungal and 719 inactive) and 706 compounds (370 antifungal and
336 inactive), respectively. Iterative external validation offsets any possible variation in the
results due to a biased splitting of the chemical compound dataset. The best discrimination
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functions, obtained with non-stochastic and stochastic quadratic indices, respectively, for the
training set are given below:

AFA = −5.01 + 5.94 × 10−4q5(�x) – 1.24 × 10−4q6(�x) – 0.02q1L
H(�xE) – 1.59 ×

10−7q12L(�xE-H) (2)

n (training) = 1436, λ = 0.41, D2 = 5.69, F(4,1431) = 509.72, Rcan = 0.766, χ2 =
1268.38, p < 0.0001

AFA = −4.44 + 0.20sq11(�x) + 0.50sq8L
H(�xE) – 0.08sq0

H(�x) – 0.62sq6L
H(�xE) (3)

n (training) = 1436, λ = 0.39, D2 = 6.07, F(4,1431) = 544.51, Rcan = 0.777, χ2 =
1324.69, p < 0.0001

where n is the number of compounds, λ is Wilks’ lambda, D2 is the square Mahalanobis
distance, F is the Fisher ratio, p value is the significance level, and Rcan and χ2 are the
correlation coefficient and chi-square parameter of the canonical LDA analysis, respectively.

While Equation (2) classified correctly 90.73% of the compounds in the training set,
misclassifying only 133 out of 1436 chemicals, Equation (3) classified correctly 92.47% of
compounds, misclassifying only 108 chemicals. As it can be appreciated from Table 1,
stochastic quadratic indices were better in predicting the antifungal activity than
non-stochastic quadratic indices in the training set, not only because of their better accuracy
and Matthew’s correlation coefficient, but also due to their higher sensitivity, specificity and
lower false positive rate. In general terms, however, both models were good in describing the
antifungal activity of chemical compounds. The classification for all active and inactive train-
ing compounds according to Equations (2) and (3) is available as supplementary information
SM1 and SM2, respectively, in the supplementary material which is available via the
multimedia link on the online article webpage.

The results obtained from the training set provide information on the predictive power of
the developed models. However, the earnest predictive power is assessed on a set of com-
pounds not employed in the model building, i.e. the test set [114, 115]. For this purpose, the
performance of the obtained discriminant functions (Equations (2) and (3)) was assessed on
the external test set. In this case, Equation (2) correctly classified 92.16% (274/282) of the
active compounds and 91.96% (141/160) of the inactives, whereas Equation (3) correctly
classified 87.56% (270/282) of the actives and 91.96% (143/160) of the inactives, giving

Table 1. Results of the training and prediction series performances using the atom-based quadratic
indices.

Matthew′s correlation
coefficient

Accuracy
‘QTotal’(%)

Sensitivity
(%)

Specificity
(%)

False positive rate‘‘false
alarm rate’ (%)

Non-stochastic descriptors (Equation (2))
Training

set
0.81 90.73 91.07 90.44 9.59

Test set 0.84 92.06 92.16 92.66 8.03
Stochastic descriptors (Equation (3))
Training

set
0.85 92.47 91.21 93.56 6.25

Test set 0.79 89.66 87.56 92.30 8.03

SAR and QSAR in Environmental Research 947
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overall accuracies of 92.06% (27/442) and 89.66% (29/442), respectively (for more details,
see Table 1). Contrary to what was observed in the training set, non-stochastic quadratic
indices were slightly superior in predicting the antifungal activity in the test set. Nonetheless,
the predictive power of both models may be considered satisfactory considering the examined
statistical parameters. The classification for all active and inactive test compounds according
to Equations (2) and (3) is available as supplementary information SM3 and SM4, respec-
tively, in the supplementary material which is available via the multimedia link on the online
article webpage.

3.2 Orthogonalisation of descriptors

In the orthogonalisation process, molecular descriptors are transformed in such a way that
they do not mutually correlate with each other. With this procedure, the exclusion of descrip-
tors, based on their colinearity with other variables previously included in the model, is
avoided as a way to improve the statistical interpretation of the model by using interrelated
indices [109–113]. Both, the non-orthogonal descriptors and the derived orthogonal descrip-
tors contain the same information. Therefore, the same statistical parameters of the QSAR
models are obtained [109–113]. It is known that the interrelation among different descriptors
can result in highly unstable regression coefficients, which makes it almost impossible to
determine the relative importance of an index included in a model. In other cases, however,
strongly interrelated descriptors can enhance the quality of a model because the small fraction
of a descriptor that is not reproduced by its strongly interrelated pair can provide positive
contributions to the model. Furthermore, the coefficients of the QSAR model, based on
orthogonal descriptors, are stable against the inclusion of new descriptors, facilitating the
interpretation of the regression coefficients and the evaluation of the role of individual
fingerprints in the QSAR model.

The results of the orthogonalisation of molecular descriptors included in both models
are shown in Table 2. Equations (2a) and (3a) represent the final models with the
orthogonalised molecular indices, whereas in the symbolism mO[qk(�x)], the superscript m
expresses the order of importance of the variable [qk(�x)] after a preliminary forward
stepwise analysis, and O means orthogonal (see Table 2). As can be observed there is
total correspondence for all statistical parameters for the orthogonal descriptor-based and
linear descriptor-based models.

This feature facilitates the interpretation of the coefficients in the LDA-QSAR equations.
Therefore, mO(qk(�x)) may be classified according to the distance k into short- (0–5), mid-
(6–10) and long-range non-stochastic and stochastic quadratic indices. As may be observed
in Table 2, short-, middle- and long-range total and atom-type (heteroatoms and H-atom
bonding to heteroatoms) quadratic indices all contribute to the models, with the local quad-
ratic indices offering greater contribution to the models’ performance. Nevertheless, total
variables such as the zero order indices were included in the models, indicating that the
size and atomic composition of the molecules are important for their activity. The high con-
tribution of local variables may be explained by the fact that the mechanisms of action of
antifungal drugs are direct and local in nature. Therefore weak non-covalent interactions
propitiated by the heteroatoms’ electronic distribution are very important for their interac-
tion with receptors. However, the inclusion of local variables of superior order, in both
models, demonstrates that an adequate molecular environment is also required, for the
interaction of antifungal drugs with their pharmacological target.
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3.3 Comparison with other approaches for antifungal activity

In the past few years, various in silico methods have been used to develop ligand-based
classification models of antifungal activity [27–29]. However, an exhaustive comparison
between these models and the ones developed herein is not possible because of the differ-
ences in the used experimental data. Therefore, the comparison is based on the number and
diversity of chemical structural patterns contained by the data, as well as on some classifica-
tion and statistical parameters. Table 3 shows the comparison between antifungal models
developed using the QuBiLS-MAS method and other approaches reported in the literature.

Firstly, the dataset used to develop QuBiLS-MAS based models is a lot larger (more than
20 times) than those employed for the rest of the models (see models 4–9 in Table 3), in
addition to presenting broader structural diversity. However, models 4–9 were built from data-
sets essentially comprising azoles, allylamines and thiocarbamates, and thus representative of
a reduced chemical structural space. Such models possess a much smaller applicability
domain, which in turn compromises their applicability in virtual screening tasks. In addition,
these models cover a short range of mechanisms of action, dealing almost exclusively with
the inhibition of the biosynthesis of ergosterol, as compared with the broad range of mecha-
nisms covered by our models.

Even then, with the exception of model 6 with a global percentage of correct classification
of 96.92% for the training set, the LDA-based QuBiLS-MAS models yielded higher accuracy
values than the rest of all the models reported in the literature (see Table 3), although some of
these were built using non-linear techniques such as support vector machines (SVM) and deci-
sion trees (C4.5), which are generally known to yield better fitted and more robust models.

Table 2. Results of Randić’s orthogonalisation analysis.

Non-orthogonal quadratic indices

q5(�x) q6(�x) q1L
H(�xE) q12L(�xE-H)

sq11(�x)
sq8L

H(�xE)
sq0

H(�x) sq6L
H(�xE)

1.00 0.99 0.61 0.54 1.00 0.90 0.99 0.90
1.00 0.55 0.54 1.00 0.87 0.99

1.00 0.56 1.00 0.87
1.00 1.00

Orthogonal quadratic indices

O(q5(x)) O(q6(x)) O(q1L
H(xE)) O(q12L(xE-H))

1O(sq11(x))
2O(sq8L

H(xE))
3O(sq0

H(x)) 4O(sq6L
H(xE))

1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
1.00 0.00 0.00 1.00 0.00 0.00

1.00 0.00 1.00 0.00
1.00 1.00

LDA based QSAR models derived from the orthogonal non-stochastic and stochastic quadratic indices

AFA = -0.004 + 3.241O(q5(�x)) –
1.472O(q12L(�xE-H)) 10.81

3O(q1L
H(�xE)) –

1.0014O(q6(�xx)) (Equation 2a)

AFA = -0.007 + 2.381O(sq11(�x)) –
4.672O(sq8L

H(�xE)) – 17.563O(sq0
H(�x)) -37.04O

(sq6L
H(�xE)) (Equation 3a)

n = 1436; λ = 0.41; D2 = 5.69; F(4,1431) =
509.72; Rcan = 0.766; χ2 = 1268.38;
C = 0.81; QTotal = 90.73

n = 1436; λ = 0.39; D2 = 6.07; F(4,1431) = 544.51;
Rcan = 0.777; χ2 = 1324.69; C = 0.85; QTotal = 92.47
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Additionally, it is important to note that model 6 possesses a much higher degree of freedom
(eight variables) relative to the QuBiLS-MAS model (four variables) and therefore its favour-
able result may probably be due to overfitting. It is thus not surprising that the test set accuracy
for model 6 falls significantly to 80% (from 96.92% for the training set), while the models 2
and 3 yield accuracy values of 92.06% and 89.66%, respectively. It may therefore be con-
cluded that the LDA-based QuBiLS-MAS models obtained in the present study possess high
robustness and predictive power, in addition to a wide applicability domain, and therefore con-
stitute valuable tools for use in the virtual screening of compounds with antifungal activity.

4. Concluding remarks and future outlooks

In the past two decades, the number of patients with severe fungal infections has increased
dramatically and concern over the rapid development of resistance to the few antifungal drugs
available has risen [116]. Despite aggressive management, the prognosis of invasive fungal
diseases, in particular those caused by filamentous fungi, continues to be dismal, with mortal-
ity rates exceeding 80% in selected categories of patients [117].

Although the need for new drugs is clear, progress in this area is slow and unpredictable.
It is suggested that the ideal antifungal agent of the future should have a broad spectrum of
fungicidal activity and be without mechanism-based host toxicity. The antifungal models
developed in the present work cover a wide chemical structural domain, a broad range of
mechanisms of action, coupled with their high accuracy, sensitivity and specificity to predict
the antifungal activity, and thus may be considered as valuable tools for use in the screening
of novel and broad spectrum antifungal agents.

Program availability

The QuBiLs-MAS software (portable standalone) and the respective user manual are freely
available online at www.tomocomd.com.

Supplementary material

The complete list of compounds used in training and prediction sets, as well as their struc-
tures, posterior classification and scores according to LDA-based QSAR models is available
free of charge in the supplementary material which is available via the multimedia link on the
online article webpage.
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