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ABSTRACT 

In the present study, we introduce novel 3D protein descriptors based on the bilinear 

algebraic form in the ℝn
 space on the coulombic matrix. For the calculation of these descriptors, 

macromolecular vectors belonging to ℝn 
space, whose components represent certain amino acid 

side-chain properties, were used as weighting schemes. Generalization approaches for the 

calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are 

proposed. The simple- and double-stochastic schemes were defined as approaches to normalize 

the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-

groups are presented in order to permit characterizing fragments of interest in proteins. On other 

hand, with the objective of taking into account specific interactions among amino acids in global 

or local indices, geometric and topological cut-offs are defined. To assess the utility of global and 

local indices a classification model for the prediction of the major four protein structural classes, 

was built with the Linear Discriminant Analysis (LDA) technique. The developed LDA-model 

correctly classifies the 92.6% and 92.7% of the proteins on the training and test sets, 

respectively. The obtained model showed high values of the generalized square correlation 

coefficient (GC
2
) on both the training and test series. The statistical parameters derived from the 

internal and external validation procedures demonstrate the robustness, stability and the high 

predictive power of the proposed model. The performance of the LDA-model demonstrates the 

capability of the proposed indices not only to codify relevant biochemical information related to 

the structural classes of proteins, but also to yield suitable interpretability. It is anticipated that 

the current method will benefit the prediction of other protein attributes or functions. 
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1. INTRODUCTION 

Molecular structural codification research has continued to attract the attention of several 

scholars in the present times, evidenced with the ever increasing amount of molecular descriptors 

(MDs) proposed (Barigye et al., 2013; García-Jacas et al., 2014; Todeschini and Consonni, 

2009). These MDs can accordingly be employed to develop models that link the chemical 

structure with some activity/property (QSAR/QSPR) of interest and select candidate structures 

for new drugs using several statistical or machine learning techniques. A lot of efforts have been 

placed on the characterization of small-to-medium-sized molecules, and large number of MDs 

have been proposed in the literature (Barigye et al., 2013; García-Jacas et al., 2014; Todeschini 

and Consonni, 2009). However, the same cannot be claimed for macromolecules (e.g. proteins) 

in that a few molecular parameters have been proposed to encode protein sequences (Rao et al., 

2011) and to a much lesser extent to account for the protein spatial structure (Estrada, 2002; 

González-Díaz and Uriarte, 2005; González Dı ́az et al., 2004; Gromiha and Selvaraj, 2001; 

Plaxco et al., 1998; Ruiz-Blanco et al., 2010; Zhou and Zhou, 2002). 

It is well-known that a single descriptor or a small number of descriptors cannot wholly 

represent the molecular complexity or model all physicochemical responses and biological 

interactions, because only a portion of the chemical information is encoded from a given 

molecular structure representations schemes (Randić et al., 2009; Todeschini and Consonni, 

2009). Thus, there is an emerging need in protein science to develop novel representations of 

proteins and novel protein descriptors, able to provide new information and better 

characterization of macromolecular structures (Randic et al., 2010). A general strategy followed 

to define new topological (2D)-protein descriptors is to extend the MDs used in classic QSAR 

studies to describe polypeptide chains (González et al., 2002; Moreau and Broto, 1980; Ramos 
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de Armas et al., 2004b).This intuitive idea was also applied by Marrero-Ponce et al. to define 

several 2D-algebraic-based protein descriptors; these MDs are based on the quadratic-, linear- 

and bilinear- algebraic forms to obtain graph-theoretical invariants from the biopolymer structure 

codified by using a graph-theoretical model called the macromolecular pseudograph α-carbon 

atom adjacency matrix (Marrero-Ponce et al., 2005b; Marrero-Ponce et al., 2004; Ortega-Broche 

et al., 2010). Moreover, these indices used the macromolecular vectors to codify biochemical 

information by means of several properties of the amino acid side-chain (R group), in analogy to 

the well-known molecular vector to represent organic molecules (Marrero-Ponce et al., 2005b; 

Marrero-Ponce et al., 2004; Ortega-Broche et al., 2010). The utility of the above-mentioned 

indices was assessed in the prediction of the biological stability of a set of Arc mutants, 

obtaining quantitative models with straightforward interpretability, good predictability, stability 

and favorable performance in comparison with several bio-macromolecular descriptors 

(Marrero-Ponce et al., 2005b; Marrero-Ponce et al., 2004; Ortega-Broche et al., 2010). An in-

house comparison of the algebraic forms revealed that bilinear indices exhibited comparable-to-

superior performance than the quadratic and linear indices, respectively (Ortega-Broche et al., 

2010). 

On other hand, in a recent report, Marrero-Ponce and coworkers introduced the novel 3D-

QSAR alignment-free MDs known as [QuBiLS-MIDAS (acronym for Quadratic, Bilinear and N-

Linear Maps based on n-Tuple Spatial Metric [(Dis)-Similarity] Matrices and Atomic 

WeightingS)] to codify the 3D chemical structure of organic compounds. These indices are based 

on the multi-linear algebraic forms on the N-Tuple Spatial-(Dis) Similarity Matrix (Marrero-

Ponce et al., 2014, Accepted for publication). Several preliminary studies with the QuBiLS-

MIDAS 3D-MDs demonstrated satisfactory behavior, suggesting that this algebraic strategy 
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yields information-rich indices of relevance in chemoinformatic tasks (Marrero-Ponce et al., 

2014, Accepted for publication). In regard to the overall performance of the three algebraic 

forms used in the definition of these MDs, the bilinear form-based indices yielded superior 

performance than the quadratic- and linear-based analogues, respectively, in the QSAR studies 

performed (Marrero-Ponce et al., 2014, Accepted for publication). 

Taking into account the suitable performance of the 2D-protein bilinear indices (Ortega-

Broche et al., 2010) and the encouraging results obtained with the QuBiLS-MIDAS 3D-MDs 

(Marrero-Ponce et al., 2014, Accepted for publication), particularly the bilinear algebraic form, 

the extension of the QuBiLS-MIDAS MDs for the characterization of the 3D structure of 

proteins seems to be a promissory undertaking. 

Different aspects have been of interest in protein structures and functions, research 

including protein subcellular location prediction (Chou and Shen, 2007), protein remote 

homology detection (Liu et al., 2012; Liu et al., 2013; Liu et al., 2014b), predicting membrane 

proteins and their types (Cai and Chou, 2006), protein structural class prediction (Chou, 2005) 

and so on. Of particular interest is the structural class identification, which is useful in enhancing 

the prediction accuracy of the tertiary structure of a given protein (Chou, 1992), and has played 

an important role in the development of prediction methods for other protein features (Chou, 

2005). Due to its importance in protein science, many computational methods have been 

proposed to address this challenge and these are classified into three main groups according to 

the approaches often used to represent the protein sample: the amino acid (AAC)-, pseudo amino 

acid (PseAAC)- and functional domain (FunD)- composition, respectively (Chou, 2005). The 

main drawback of the AAC-based methods (Chou, 1995; Chou and Zhang, 1994; Liu and Chou, 

1998) is the lack of information on sequence order-effects, thus in general sense, prediction 
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quality was very limited. In order to codify more sequence-order information and hence improve 

the prediction quality, the PseAAC was introduced (Chou, 2001) and subsequently different 

kinds of PseAAC were built for enhancing the prediction accuracy (Chen et al., 2006; Ding et al., 

2007; Xiao et al., 2008a; Xiao et al., 2008b; Xiao et al., 2006; Zhang et al., 2008). In addition to 

the AAC and the PseAAC, the FunD approach aimed at formulating the sample of a protein has 

been proposed and this probably constitutes one of the most significant progress in this field 

(Chou and Cai, 2004). Recently, besides the conventional PseAAC approach (Kong et al., 2014; 

Li et al., 2009), other studies incorporating evolutionary information in the representation of the 

protein sample have been proposed (Chen et al., 2008b; Zhang et al., 2014). For comprehensive 

reviews on the progress of prediction methods see (Chou, 2005; Chou, 2011; Chou, 2000). 

The core objective of the present report is to introduce a new class of 3D-protein indices 

based on the bilinear algebraic forms. To evaluate the utility of these indices in the description of 

the proteins’ macromolecular structure, LDA models to predict the protein structural classes are 

built. 

 

2. THEORETICAL FRAMEWORK 

2.1. Bilinear Coulombic Indices for Amino Acid-Level and Total (Global) Definitions.  

Proteins are polymers of amino acids, with each amino acid residue linked to its neighbor 

by a peptide bond (Lehninger et al., 2005). The 20 amino acids commonly found as residues in 

proteins are α-amino acids and differ from each other in their side chains(R groups), which vary 

in structure, size, electric charge and these factors influence the solubility of the amino acids 

(Lehninger et al., 2005). 
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If each amino acid is considered as a “pseudo-vertex”, that is, a vertex composed of 

several vertices (atoms), then the physicochemical properties of each pseudo-vertex (α-amino 

acid) can be weighted according to the nature of its R group. On this basis, the k
th

 bilinear 

coulombic indices for amino acid “a” ( ���)�  are calculated as bilinear forms (maps) in ℝn
, on a 

canonical basis set, and are defined as: 

���� = 	
��(�̅�, ���)�,�,� =�� ����,�,� ��� ��� = [�]�
�

�� 

�

�� 
!��� ["]																																							($)	 

where, n is the number of amino acids (α-amino acids) in the protein,	 ����,�,�
 are the elements of 

the k
th

 power (see next subsection) amino acid-level coulombic matrix (representing a single 

amino acid “a”)	 !��� and are calculated from the coefficients ����,�
 of the global (whole-protein) 

k
th

 coulombic matrix !�� as follows: 

����,�,� = ����,�
 if (% = & ∧ ( = &) 

����,�,� =  
) ����,�

 if (% = & ∨ ( = &)                             (2) 

����,�,� = 0 otherwise. 

On other hand, ���  and ��� are the components of the macromolecular vectors �̅� and ���, 

respectively, in the canonical basis set. Accordingly, [X] and [Y] are column vectors (n×1 

matrices) of the coordinates of macromolecular vectors �̅� and ���, respectively, [X]
T
 (a 1×n 

matrix) is the transpose of the vector of properties [X] and O-B is the combination of properties 

of amino acids. The use of amino acid-based macromolecular vectors for codifying polypeptide 

sequences is explained in detail in (Marrero-Ponce et al., 2005b; Marrero-Ponce et al., 2004; 

Ortega-Broche et al., 2010). The components (coordinates) of these macromolecular vectors are 

numerical values, which represent certain amino acid side-chain property (Marrero-Ponce et al., 
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2005b; Marrero-Ponce et al., 2004; Ortega-Broche et al., 2010). In the present report, the 

following properties are used as weighting schemes : molecular mass (MM) (Mathews et al., 

2000), side-chain volume (MV) (Zamyatnin, 1972), z-values (Hellberg et al., 1987), atomic 

charge (ECI) (Collantes and Dunn III, 1995), isotropic surface area (ISA) (Collantes and Dunn 

III, 1995), Hoop-Woods hydropathy index (HWS) (Hopp and Woods, 1981), Kyte-Doolittle 

hydropathy index (KDS) (Kyte and Doolittle, 1982), isoelectric point (PIE) (Hellberg et al., 

1987); relative frequencies with which an amino acid appears forming α-helices (PAH), β-sheets 

(PBS) and reverse turns (PTT) , respectively (Mathews et al., 2000); geometric compatibility 

parameters (L19, ξ) and heat of formation (EPS) (Sak et al., 1999), (see Table 1 for details). 

Thus, a peptide (or protein) having 5, 10, 15, . . ., n amino acids can be represented by means of 

vectors, with 5, 10, 15, . . ., n components, belonging to the spaces ℝ5
,	ℝ10

,	ℝ15
, . . . ,	ℝn 

(Ortega-

Broche et al., 2010). For instance, if one wants to encode the bradykinin-potentiating 

pentapeptide VKWAA (Collantes and Dunn III, 1995), using the weighting scheme defined by the 

z1-scale and z3-scale, then the following macromolecular vectors	�̅� = [−2.69	2.84 −
4.75	0.07	0.07] and ��� = [−1.29 − 3.14	0.85	0.09	0.09] are obtained and both belong to the 

product space ℝ5
. 

Table 1 comes about here 

If a protein is partitioned into “A” amino acids, then the global matrix !�� can be 

partitioned into “A” amino acid-level matrices ( !� �
�), and thus the k

th
 power of !�� is exactly the 

sum of the k
th

 power of the “A” amino acid-level matrices. As can be noticed from (Eq.1), each 

amino-acid level matrix !� �
�
 determines an amino acid-level bilinear coulombic index ���� , 

[designated by the acronym: LOVI (LOcal Vertex Invariant)] (Balaban, 1994; Todeschini and 

Consonni, 2009; Todeschini, 2010) for amino acid “a”. In this way, the total (whole-protein) 
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bilinear coulombic indices are calculated from the contribution of each amino acid and thus can 

be represented as a vector of size n (denoted here as ��� �), where each component ����  of ��� � 

corresponds to the bilinear coulombic amino acid-level index for amino acid “a”. Therefore, the 

total (whole-protein) k
th

 bilinear coulombic indices are calculated as the sum of each k
th

 amino 

acid-level bilinear coulombic index ���� , in way similar to the approaches proposed in 

(Marrero-Ponce et al., 2014, Accepted for publication; Ortega-Broche et al., 2010): 

	���(�̅�, ���)		�,� = � ���� =
�

�� 
	 [�]�!��["]																																																																																			(7) 

The matrix !�� can be classified as a generalized reciprocal matrix M
-λ

 (Todeschini and 

Consonni, 2009). Generalized reciprocal matrices are a type of matrices obtained by raising the 

non-diagonal matrix elements to some negative exponent, where λ is usually an integer positive 

parameter (Todeschini and Consonni, 2009). One of the most popular reciprocal matrices 

obtained for λ=1 is the reciprocal geometry matrix 8� . The reciprocal geometry matrix is an 

n×n symmetric matrix, where n is the number of atoms in a molecule, each entry (rij)
-1

 is 

calculated by raising the non-diagonal elements rij of the geometry matrix 8 to the power -1 

(Todeschini and Consonni, 2009). On other hand, the elements rij of the geometry matrix are 

calculated as the Euclidean distance between atoms i and j and diagonal entries are always zero 

(Todeschini and Consonni, 2009). Recently, several approaches were proposed as 

generalizations of the aforementioned geometry matrix in the definition of the QuBiLS-MIDAS 

3D-MDs (Marrero-Ponce et al., 2014, Accepted for publication). One of such approaches 

consists in the generalization of inter-atomic spatial distances through the Minkowski distance 

norm (Marrero-Ponce et al., 2014, Accepted for publication). An approach based on this metric 
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is adopted in the present report to codify information on the 3D structure of proteins (discussed 

in the next subsection). 

2.2 Coulombic Matrix for the Representation of the 3D Structure of Proteins. 

The protein spatial structure is a complex three-dimensional object, defined by the 3D 

distribution of its constituent atoms. As is well-known, the protein tertiary structure depends 

mainly on a complex network of inter-residue interactions, which play an important role in the 

processes of stabilizing and maintaining the macromolecular structure (Lehninger et al., 2005). 

Hence, these interactions are a suitable starting point to codify information on the 

macromolecular structure (Di Paola et al., 2012).On other hand, using graphical approaches to 

study biological problems can provide an intuitive picture or useful insights in the analysis of 

complicated relations in these systems (Lin and Lapointe, 2013), as demonstrated in  previous 

studies on a series of important biological processes, such as enzyme-catalyzed reactions (Zhou 

and Deng, 1984), inhibition of HIV-1 reverse transcriptase (Althaus et al., 1993), drug 

metabolism systems (Chou, 2010), sequence evolution (Wu et al., 2010), and protein-protein 

interactions (Zhou, 2011) studied using the wenxiang diagram or graph (Chou et al., 1997; Chou 

et al., 2011) . 

The representation of proteins as molecular graphs, where the amino acids are considered 

as pseudo-vertices and the covalent interactions between amino acids (peptide bonds) and non-

covalent interactions between the side chains of amino acids as pseudo-edges, permits a matrix 

based representation of its bio-macromolecular structure, which in turn serves as a valuable 

source for protein MDs. Here, the coulombic matrix !�� is defined. 

Formally, the coulombic matrix !�� is an n×n square matrix, where n is the number of 

amino acids within the protein, and its entries ����,�
 are defined as follows: 
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( )    

jif i

jif i
dz

kp

ijij

kp









=

≠
=

,0

,
1

,                                                                                      (4) 

where, 9�� = :;�� − ��;� + ;�� − ��;� + ;�� − ��;�=
>
?, 9���  is the distance between two vectors 

in	ℝ3
 (x

i
, y

i
, z

i
) and (x

j
, y

j
, z

j
) that correspond to the spatial coordinates for the α-carbon atoms 

(Cα) of the amino acids i and j, respectively, and p is a Minkowski distance-based metric, 

1 ≤ A ≤ 3, thus for p=1 or p=2 the distance between pairs of Cα is computed as the well-known 

Manhattan or Euclidean distances, respectively. It is worth noting that when no normalizing 

procedure is performed (see next subsection) for the elements of !��, this matrix is designated as 

the k
th

 non-stochastic coulombic matrix !�B �
�
 (NS

k
-CM) and its entries are denoted as ����B

�,�
. In 

addition, the matrix !�B �
�

 determines the k
th

 total (global) non-stochastic bilinear coulombic 

indices 	���(�̅�, ���)�B
�,�

, which are calculated by replacing the general coulombic matrix !�� by 

!�B �
�
 in (Eq. 3). The term coulombic is inspired in the relation between the distance and the 

magnitude of non-covalent interactions of diverse nature. In ref (Kar, 2007), it is demonstrated 

that the relation between the distance and the strength of non-covalent interactions contributes in 

a greater or lesser extent to the maintenance of the 3D structure of a macromolecule according to 

the distance at which the functional groups are interacting. Therefore, with the aim of modeling 

the functional relationship between the distance and the strength of non-covalent interactions 

among the functional groups of amino acids in a given protein, the parameter k is used, e.g. for k 

= 1, k = 2, !�B �
�
 reflects Coulombic-like and/or gravitational-like interactions. The maximum k 

value of 12 is related to the non-bonded (mainly steric) interactions associated with the 

functional form of the Lennard-Jones 6-12 potential. On other hand, it is important to remark that 
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the reciprocal geometry matrix 8� coincides with the specific !�B  ) constructed by using p=2 

(Euclidean distance) and k=1. 

2.3. Normalization Formalisms based on Simple-Stochastic and Double-Stochastic 

Schemes. 

Probabilistic transformations for matrices that encode information on the molecular 

structure have been previously performed in the calculation of both molecular and bio-

macromolecular descriptors (Carbo-Dorca, 2000; González-Díaz and Uriarte, 2005; González et 

al., 2002; Marrero-Ponce et al., 2005a; Marrero-Ponce et al., 2008; Marrero-Ponce et al., 2014, 

Accepted for publication; Ramos de Armas et al., 2004a). These methods utilize simple 

stochastic scaling, where the sum of the elements of each row is used as a scaling factor, 

generating alternative non-symmetric matrices, whose columns can be interpreted as discrete 

probability distributions. 

With the purpose of normalizing the k
th

 non-stochastic coulombic matrix, two approaches 

are defined: the simple- and double-stochastic coulombic matrices, respectively, (see Figure 1). 

Firstly, the k
th

 simple-stochastic coulombic matrix, !BB �
�

 (SS
k
-CM) is an n×n square non-

symmetric matrix and its elements ���BB
�,�

 are defined as follows: 

���BB
�,� 	= 
CDEF

?,G

∑ 
CDEF
?,GEDI>

	                                                                                                                  (5) 

An n×n square matrix is considered to be stochastic if has the property that the sum of the 

elements in each row or each column is 1, that is, the row elements or the column elements are 

non-negative real numbers that can be interpreted as probabilities (Edwards and Penney, 1988). 

The non-symmetrical property of the matrix !BB �
�
 is due to the fact that the probability for 

amino acid i to interact with an amino acid j, is different from the probability for the amino acid j 
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to interact with the amino acid i. With the aim of equalizing the probabilities in both senses, 

Marrero-Ponce et al. introduced the double-stochastic matrix as an alternative normalization 

strategy (Marrero-Ponce et al., 2014, Accepted for publication). In the same spirit, we employed 

in this study the k
th

 double-stochastic coulombic matrix, !JB �
�
 (DS

k
-CM) as a normalization 

approach computed through the double stochastic transformation of !�B �
�

 , for details on this 

procedure refer to (Sinkhorn and Knopp, 1967). 

Consequently, in analogy to the k
th

 total non-stochastic bilinear coulombic indices, the k
th

 

total simple-stochastic- 	���(�̅�, ���)BB
�,�

 and double-stochastic- 	���(�̅�, ���)JB
�,�

 bilinear 

coulombic indices are calculated from the k
th

 simple-stochastic- !BB �
�

and double-stochastic- !JB �
�
 

coulombic matrices, respectively. 

Figures 1 and 2 come about here 

2.4. Local-Fragment (amino acid-type, groups) Bilinear Coulombic Indices. 

The proposed matrices ( !�B �
�, !BB �

�, !JB �
�
) could be employed for codifying information 

on certain fragments F of the protein. Therefore, the k
th

 local-fragment coulombic matrix !�K�  can 

be obtained from the global matrix !��. This matrix !�K�  contains information on distances among 

Cα of α-amino acids belonging to specific polypeptide fragments (F) and its elements ���K�,�
 are 

defined as follows: 

���K�,� = ����,�
 if (% ∧ () ∈ M 

���K�,� =  
) ����,�

 if (% ∨ () ∈ M but not both        (6) 

���K�,� = 0 otherwise. 

It should also be pointed out that for every partitioning of a protein into R polypeptide 

fragments there will be R polypeptide local-fragment matrices. Analogous to the k
th

 amino acid-
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level indices, the k
th

 local-fragment amino acid-level indices are calculated as bilinear forms 

using the following expression: 

����K = 	�K��(�̅�, ���)�,�,� =�� ���K�,�,� ��� ��� = [�]�
�

�� 

�

�� 
!�K�� ["]																																								(N) 

where, ���K�,�,�
 is the k

th 
element of the row “i” and column “j” of the kth local-fragment amino 

acid-level matrix !�K��  according to the amino acid “a”. This matrix is extracted for each amino 

acid of the protein from the local-fragment matrix !�K� . Note that similar to their total analogues, 

when no normalizing procedure is carried out over the entries ����,�
 of the matrix !��, the 

resulting local-fragment matrix !�K�  is designated as the k
th

 non-stochastic coulombic local-

fragment matrix !�B �K
�

. It follows that the simple-stochastic !BB �K
�

 and double-stochastic !JB �K
�

 

local-fragment matrices of order k, can be computed from the !�B �K
�

 in the same manner as 

described in Subsection 2.3. These local analogues can also be expressed in matrix form for each 

macromolecular vector �̅� ∈ ℝ� and	��� ∈ ℝ�. Similar to the total indices, the local-fragment 

analogues may be represented as a vector ���K � of size n, where each component ����K  of 

���K �	corresponds to the local-fragment bilinear amino acid-level index (LOVI) for amino acid 

“a”. Therefore, the k
th

 local-fragment bilinear coulombic indices 	�K��(�̅, ��)�,�
, are calculated as 

a summation over vector of LOVIs ���K �. 

It is important to remark that a local-fragment (F) can be a sequence of consecutive 

residues as well as groups of residues distant in the sequence. In this paper, the local indices can 

be calculated by using the following local-fragments (amino acid-type): apolar (RAP), polar 

positively charged (R+), polar negatively charged (R-), polar uncharged (RPU), aromatic (ARG) 

and aliphatic (ALG). In the amino acid-type formalism, each α-amino acid in the protein is 
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classified into amino-acid-type (fragment), depending on the nature of its R group. Also we 

defined groups that include the amino acids that do not favor the folding and/or cannot be 

commonly found in proteins as part of α-helices or β-sheets (UFG), α-helices favoring amino 

acids (FAH), β-sheets favoring amino acids (FBS) and β-turns favoring amino acids (AFT) 

(Mathews et al., 2000). Additionally, groups composed of amino acids of the same kind (R 

amino acids) in the protein were defined, that is, 20 groups with one for each natural amino acid, 

(e.g. F=Ala, F=Arg,…, F=Val). Table 2 shows the amino acidic composition of the local-

fragments that are pre-defined in the TOMOCOMD-CAMPS software (acronym of TOpological 

MOlecular COMputational Design- Computer-Aided Modelling in Protein Science). However, 

there is an option for the users to define their own local-fragments. 

Table 2 comes about here 

Similar to the global indices, the k
th

 (local-fragment) non-stochastic 	�K��(�̅�, ���)�B
�,�

, 

simple-stochastic 	�K��(�̅�, ���)BB
�,�

 and double-stochastic 	�K��(�̅�, ���)JB
�,�

 bilinear coulombic 

indices are introduced and are computed from the local-fragment matrices !�B �K
� , !BB �K

� , !JB �K
�

, 

respectively. 

2.5. Geometric and Topological Constraints-based Approach 

Non-covalent interactions have an important influence on the final structure of 

macromolecules, their specific binding modes and in the process of self-organizing of 

macromolecular and cellular structures, among other structural and functional aspects (Mathews 

et al., 2000). The relationship between the distance and the magnitude of the non-covalent 

interactions of diverse nature demonstrates that these contribute to the maintenance of the 3D 

structure of the protein, depending on the distance that the interacting groups are found. In this 

way, some of these interactions are only important when the functional groups are so close 
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among themselves or distant in the sequence but sterically close (large-contacts). On other hand, 

the relationship between the topology and the folding of biopolymers has been elucidated in 

diverse studies, where significant correlation between simple structural parameters and the speed 

of protein folding has been found (Gromiha et al., 2004; Gromiha, 2003; Gromiha and Selvaraj, 

2001; Plaxco et al., 1998). Among these parameters are: RCO (acronym for Relative Contact 

Order) and LRO (acronym for Long-range order) proposed by Plaxco et al.(Plaxco et al., 1998) 

and Gromiha et al. (Gromiha and Selvaraj, 2001), respectively. In this way, sometimes it may be 

useful to build matrices with information on the contact (interaction) between amino acid 

residues found at a certain distance (or distance range) in the sequence with the objective of 

studying possible relations between a specific property and topological features of the native 

state of the protein. 

Bearing all this in mind, with the purpose of taking into account only some type of non-

covalent interactions and thus consider only significant interactions in global or local indices, 

two different approaches are applied: 

1) Geometric cut-off (l), based on Euclidean distance at lag l, termed as “length cut-off”. 

2) Graph-theoretical cut-off (p) based on topological distance at lag p, designated as “path 

cut-off”. 

The application of one or both cut-offs over !�B �
�
 generates the non-stochastic coulombic 

matrix at the lags l and/or p and their entries are calculated from the !�B �
�

 as follows: 

 otherwise                 

 p por   p  andl l if l where, δ

 δz z

ijij

ij

ij

ij

kp

nsij

kp

ns

0

/1 maxminmaxmin

,,

=

≤≤≤≤=

×=

                                    

(8) 

where, lmin and lmax are the lower and upper bounds for Euclidean distance, respectively, and lij is 

the geometric Euclidean distance between the α-amino acids i and j; pmin and pmax are the pre-
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defined topological distance thresholds, pij is the topological distance between the amino acids i 

and j. It is important to note that when the length and/or path thresholds are applied to the 

computation of the !�B �
�
, a sparse matrix (a matrix with relatively few nonzero elements) is 

obtained, where each entry ����B
�,�

 coincides with its original definition (the term ijδ =1, see 

(Eq.4), only if the Euclidean (lij) and/or topological (pij) distances between amino acids i and j 

lie(s) within the pre-defined geometric (lmin-lmax) and/or topological (pmin-pmax) intervals and is 

zero otherwise. 

The constraints approach (both length and path thresholds) permit unifying geometric and 

topological information in the same matrix and they also allow us to consider the most relevant 

interactions and at the same time excluding irrelevant chemical information due to long-range 

interactions. It is not is mandatory to use any constraints for calculations. However, 

incorporating this approach may be beneficial as the “cut-offs” permits the discrimination of the 

interaction types. 

For instance, the use of the length criterion (together with exponent k) permits taking into 

account only those non-covalent interactions, among the functional groups of the amino acids, 

which significantly contribute to the maintenance of the 3D protein structure. In addition, the k 

exponent in the term (9��� )�of (Eq. 4) models the functional relationship that exists between the 

distance and the strength of the interaction between the functional groups of the amino acids i 

and j. 

On the other hand, the path criterion permits the selection of the non-covalent interactions 

for amino acids within a given topological distance. It should be noted that the topological 

distance between two amino acids i and j is determined by the shortest path between vertices i 
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and j (Cα
i 
,Cα

j
) of the graph whose i

th
 vertex represents the Cα

i 
of the peptide backbone and the 

edges are the peptide bonds between the amino acids i and j. 

Illustrations of the application of the length, path or both constrains to the computation of 

entries of the non-stochastic coulombic matrix of order 1 at the lags l and/or p ( !�B  
�
)
 
to 

characterize the 3D structure of a sample peptide could be found in the Figure 3. 

Figure 3 comes about here 

Lastly, the k
th

 simple- and double-stochastic matrices at the lags l and/or p can be 

computed from the k
th

 non-stochastic matrix at the lags l and/or p, in the same way as described 

in Subsection 2.3. Thus, the k
th

 (global or local) NS-, SS- and DS- bilinear coulombic indices at 

the lags l and/or p are calculated from the k
th

 (global or local) NS-, SS- and DS- coulombic 

matrices at the lags l and/or p, respectively. 

 

3. APPLICATION OF THE BILINEAR COULOMBIC INDICES TO THE PREDICTION 

OF PROTEIN STRUCTURAL CLASSES. 

3.1 Benchmark Dataset. 

The prediction of protein structural classes is of relevance in protein science, and it 

generally consists of classifying a protein into one of the major structural classes (All-α, All-β, 

α/β, α+β) (Levitt and Chothia, 1976). The development of a classification model for the 

prediction of the major protein structural classes is a key aspect in the present study. To this end, 

the widely used dataset proposed in (Chou, 1999) was selected; it consists of 204 proteins of 

which: 52 are All-α, 61 All-β, 45 α/β and 46 α+β. In the construction of this benchmark dataset, a 

cutoff threshold of 30% was used (Lin and Li, 2007), a value considerably stringent to guarantee 

low homology bias and redundancy in this dataset. The validation of the obtained models 
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represents one of the most important steps in the QSAR/QSPR model development process as it 

provides criteria on the true predictive ability of the generated models (Todeschini and Consonni, 

2009). In statistical analysis, the following three cross-validation methods are often used to 

examine a model for its effectiveness in practical applications: independent dataset test, 

subsampling test, and jackknife test (Chou, 2001). On one hand, of the three test methods, the 

jackknife test is deemed by some authors as the least arbitrary and most objective that can always 

yield a unique result for a given benchmark dataset as elaborated in (Chou, 2011). In the context 

of structural class prediction the jackknife test, that is, the leave-one-out cross-validation 

approach is often employed for assessing the predictive power of the models (Cai et al., 2002a; 

Cai et al., 2002b; Cai et al., 2006; Chen et al., 2008a; Chen et al., 2006; Chen et al., 2008b; 

Chou, 1999; Ding et al., 2007; Lin and Li, 2007; Shen et al., 2005; Xiao et al., 2008a; Xiao et al., 

2008b; Xiao et al., 2006; Zhang et al., 2008). 

On the other hand, as discussed in (Golbraikh and Tropsha, 2002; Gramatica, 2007; 

Tropsha et al., 2003), when the number (N) of instances (compounds) is high (e.g. N>100), the 

leave-one-out approach performs very similar to the fit, due to small perturbation of the data 

when one instance is left out; thus it should be considered as a measure of the goodness-of-fit 

(internal performance) of the model, rather than a measure of its predictive ability, hence high 

performance in internal cross-validation can be regarded as a necessary, but insufficient 

condition for the models to have a high predictive power (Golbraikh and Tropsha, 2002; 

Gramatica, 2007; Tropsha et al., 2003). 

Actually, as the real utility of a QSAR/QSPR model relies in its ability to accurately 

predict the modeled (activity/property) for new compounds, a realistic evaluation of the model 

true predictive power must be determined in the most appropriate and rigorous way possible 



20 

(Tropsha et al., 2003).Therefore, the external validation should be seen as a useful complement 

to internal validation, rather than as a substitute or superior alternative (Gramatica, 2007). 

Following the above statement, we adopted the independent dataset test in this study to validate 

the classification model. 

Therefore, the original dataset was split into the training and test sets, for the calibration and 

external validation of the classification model (see Figure 4). However, there exists the issue 

concerning to the splitting method employed as the models’ results are strongly dependent on the 

splitting of the data (Todeschini and Consonni, 2009). As can be seen in (Todeschini and 

Consonni, 2009), the splitting into training and test sets can be used reliably only if the splitting 

of the data is performed by a well-stated criterion, such as a criterion based on experimental 

design or cluster analysis or other deterministic approaches. In this sense, the original dataset 

was split into the training and test sets using the cluster analysis method. Specifically, the k-

means method with Euclidean distance as the similarity/dissimilarity measure was applied to the 

4 sets of 52 (All-α), 61 (All-β), 45 (α/β) and 46 (α+β) proteins, respectively, which were 

distributed separately in 3 (All-α), 7 (All-β), 3 (α/β) and 4 (α+β) clusters. Random stratified 

sampling was performed as strategy to guarantee a good representativity in each case, where 

each one of the clusters in each structural class was taken as a stratum. As a result, a training set 

composed of 149 proteins was obtained, having: 38 (All-α), 48 (All-β), 29 (α/β) and 34 (α+β), 

and a test set containing 55 proteins of which: 14 were (All-α), 13 (All-β), 16 (α/β) and 12 (α+β); 

proteins within the test set were never used to build a model. 

Figure 4 comes about here 

3.2 Development of the Classification Model. 
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The classification model was built with Linear Discriminant Analysis (LDA) implemented 

in the STATISTICA 6.0 software package (http://www.statsoft.com/ ) using total and local 3D-

protein bilinear indices, which were calculated with the TOMOCOMD-CAMPS software. The 

choice of LDA to generate the classification model is based on its simplicity (McFarland and 

Gans, 1990). The canonical transformation of LDA, [i.e. Canonical Discriminant Analysis 

(CDA)] was used in the present study to derive the discriminant functions. The CDA is a 

dimension-reduction technique that derives linear combinations of the variables (MDs) also 

known as canonical components, in a decreasing order of possible multiple correlation with the 

groups (classes) of observations (proteins). The number of derived canonical components by 

CDA is equal to the number of original variables or the number of classes minus one, depending 

on which parameter (variables or classes) is smaller. In this case, we have four structural classes 

of proteins, hence three canonical components or canonical discriminant functions (CDF) can be 

obtained. The CDF of the best classification model obtained are given below together with the 

corresponding statistical parameters: 

OPQ$ = −2.3 × 10� S	 	�JB
 , TT�U V(�̅�, ���) − 6.2 × 10�W	 	�X�Y�BZ, 

TT�[\](�̅�, ���) 

																		+1.2	 × 10�^	 	�JB
 , ]_\�TT(�̅�, ���) − 1.1 × 10�W	 	�JB

), ]_\�[`a(�̅�, ���) 

						+3.0	 × 10� S	 	�JB
Z, \b`�[\](�̅�, ���) − 5.0 × 10�^	 	�JB

 , [\]�]_\(�̅�, ���)        (9) 

																−3.3 × 10� S	 	�JB
Z, [\]�][b(�̅�, ���) + 5.3 × 10�c	 	�JB

), [`a�[b(�̅�, ���) 

																−3.9 × 10�V	 	�JB
Z, [b�Td(�̅�, ���) + 1.6 × 10�V	 	�JB

),) [b�[`a(�̅�, ���) 

																	+1.7 × 10�  	 	�JB
Z,) [���Td(�̅�, ���) + 6.0 

                       N = 149   λ=0.01   χ2
(33) = 660.03   p < 0.01 

 

OPQe = 1.0 × 10�V	 	�JB
 , TT�U V(�̅�, ���) − 6.2 × 10�W	 	�X�Y�BZ, 

TT�[\](�̅�, ���) 



22 

																		−5.1	 × 10�^	 	�JB
 , ]_\�TT(�̅�, ���) + 4.4 × 10�W	 	�), JB ]_\�[`a(�̅�, ���) 

							−2.9	 × 10�V	 	�JB
Z, \b`�[\](�̅�, ���) + 2.2 × 10�c	 	�JB

 , [\]�]_\(�̅�, ���)         (10) 

																				+1.2 × 10�V	 	�JB
Z, [\]�][b(�̅�, ���) − 3.6 × 10�W	 	�JB

), [`a�[b(�̅�, ���) 

																				+2.4 × 10�^	 	�JB
Z, [b�Td(�̅�, ���) + 1.8 × 10�^	 	�JB

),) [b�[`a(�̅�, ���) 

																				−1.5 × 10� S	 	�JB
Z,) [���Td(�̅�, ���) − 1.3 

N = 149   λ=0.27   χ2
(20) = 185.99   p < 0.01 

 

OPQ7 = −5.7 × 10� S	 	�JB
 , TT�U V(�̅�, ���) − 1.4 × 10�W	 	�X�Y�BZ, 

TT�[\](�̅�, ���) 

																	−6.4	 × 10�^	 	�JB
 , ]_\�TT(�̅�, ���) − 7.6 × 10�W	 	�JB

), ]_\�[`a(�̅�, ���) 

	+9.2	 × 10� S	 	�JB
Z, \b`�[\](�̅�, ���) − 2.2 × 10�c	 	�JB

 , [\]�]_\(�̅�, ���)								     (11) 

																	+3.1 × 10� S	 	�JB
Z, [\]�][b(�̅�, ���) + 5.4 × 10�W	 	�JB

), [`a�[b(�̅�, ���) 

																−3.3 × 10�^	 	�JB
Z, [b�Td(�̅�, ���) + 4.4 × 10� S	 	�JB

),) [b�[`a(�̅�, ���) 

																	−2.6 × 10�  	 	�JB
Z,) [���Td(�̅�, ���) − 0.01 

N = 149   λ=0.96   χ2
(9) = 185.99   p = 0.80 

where, N is the number of cases (proteins), λ is Wilks statistic, χ2
(d.f) is Chi-square statistic, d.f 

degrees of freedom and p is the associated signification level. The quality of the discriminant 

functions was assessed by means of the Wilks’ λ. The Wilks’ λ statistic takes values from 0 

(perfect discrimination) to 1 (no discrimination). Wilks’ λ global value of the LDA-model 

approximates to 0.01 and the F (33,398) statistic associated to λ (47.4) was very significant at a 

p-level<0.001. These statistics suggest the rejection of the null hypothesis, which enunciates the 

equality of multivariate means. It is thus possible significantly discriminate among the four 
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classes of the considered proteins using linear combinations of the total and local bilinear 

coulombic indices. 

Statistical signification tests of the Wilks’ λ for each one of the functions reveal that only 

CDF1 and CDF2 allow discriminating significantly among the groups’ means. As shown in 

Table 3, the values for centroids of each group (class) in CDF3 are more proximate than the 

values for centroids in CDF1 and CDF2. In addition, the relative magnitude of the eigenvalue 

associated to CDF3 indicates that the percentage of variance explained for this function is 

approximate to 0.13%. Unlike Wilks’ λ and the associated Chi-square test, the percent of 

variance explained is indicative of the practical rather than the statistical significance of the 

functions for group discrimination. Therefore, in comparison to the proportions of variance 

explained by CDF1 (91.4%) and CDF2 (8.5%), the variance explained by means of the CDF3 is 

not significant and it does not relevantly contribute to the LDA-model. 

A comparison among the centroids in each CDF (see Table 3), indicates that CDF1 

mainly discriminates the classes All-α and α+β as a whole from the classes All-β and α/β, 

respectively, as well as All-β from α/β. On other hand, the CDF2 discriminates the All-β proteins 

from the All-α, α/β and α+β, respectively. In addition, the CDF2 discriminates between the 

classes All-α and α+β better than any other discriminant functions. A joint analysis of centroids 

and standardized coefficients (see Tables 3-4), on the CDF1 and CDF2 indicates that since the 

only negative centroid in CDF1 corresponds to α/β proteins, then proteins with higher values for 
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On other hand, All-β is the only class with a positive centroid in CDF2, therefore proteins 

with higher values, particularly in variables )( ,
1,2

mm
PAHECI

zds yxb
− and )( ,

1,3
mm

MVPBS

zds yxb
−  , and lower 

values in )( ,
1,1

mm
MMECI

zds yxb
− and/or )( ,

1,2
mm

PBSPAH

zds yxb
− are predicted as All-β, whereas those 

proteins that present high values, mainly for variables, )( ,
1,1

mm
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zds yxb
− 	and/or 

)( ,
1,2

mm
PBSPAH

zds yxb
− are classified as All-α or a/β. Although the centroids of the classes All-α and 

a/β in CDF2 have the same sign, this function is the one that most contributes to the 

discrimination between these classes. Consequently, proteins with mean values of 
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relevant in the separation of the four classes since they have the standardized coefficients of 

greater magnitude in the canonical discriminant functions with higher explained variance. 

Tables 3 and 4 comes about here 

The relevance of these descriptors in the structural classification of proteins may be due 

in part to the type of biochemical information codified in the macromolecular vectors (�̅�, ���) 

used in their calculation. For instance, the properties PAH and PBS codify conformational 

information of amino acids i.e. they describe the frequency with which an amino acid appears 

forming part of segments of α-helices and β-sheets, respectively (Levitt, 1978). Furthermore, it is 

known that the trend of an amino acid to favor protein folding depends on the volume of its side-

chain [(MV) and (MM)] and its polarity (ECI) (Collantes and Dunn III, 1995). Thus, for 
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instance, amino acids that promote the formation of β-sheets have on average, more voluminous 

side chains (MV) [thus their molecular mass (MM) is greater] and also they have lower polarity 

than those that favor the formation of α-helices (Levitt, 1978). Therefore, it is not surprising that 

the MDs calculated using the properties: PAH, PBS, MV, MM and ECI have relevant 

discriminatory power in the structural classification of proteins. 

3.3 Assessing the Accuracy of the Classification Model. 

The quality of the LDA-model was preliminary determined by examining the rates of 

correct classification on the training and test series. As can be observed from Table 5, the LDA-

model (Eqs.9-11) yields a rate of correct classification of 86.8% (33/38) for the class All-α, 

97.9% (47/48) for All-β, 100% (29/29) for α/β and 85.3% (29/34) for α+β, for an overall 

accuracy of 92.6% (138/149) on the designed training set. On other hand, the LDA-model 

correctly classifies the 92.7% (51/55) of the proteins within the test set. These results indicate 

that this model is suitable for discriminating among the four protein structural classes (Eriksson 

et al., 2003; Golbraikh and Tropsha, 2002). 

The classification of proteins was performed by means of a posteriori classification probability; 

it represents the probability, with which a protein belongs to a particular class, and it was 

calculated from the Mahalanobis distance (D) and the associated distribution (Hotelling’s T
2
). 

The classification results on the training and test sets are consistent with the previous analysis of 

the discriminatory power in each of the discriminant functions, in that the lowest percentages of 

correct classification are obtained for the classes All-α and α+β (see Table 5). These classes are 

precisely those which have the nearest centroids in CDF1 and CDF2. In addition, it should be 

pointed out that most misclassified proteins for the class All-α truly belong to the class α+β and 

vice versa, (see SI1 for details). 
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To perform a deeper evaluation of the quality of the LDA-model, other performance 

measures were considered (Baldi et al., 2000). On one hand, the LDA-model exhibited high 

values for the percentage measures sensitivity and specificity (see Table 5), where sensitivity is 

the probability of correctly predicting a positive case and specificity is the probability that a 

positive prediction is correct (Baldi et al., 2000). Additionally, the LDA-model showed high 

values of the generalized square correlation GC
2
; this parameter quantifies the linear correlation 

degree between the classification of the model and the experimental class, where a value of +1 

represents a complete linear correlation among the variables in consideration (Baldi et al., 2000). 

In this case, the LDA-model yield 0.91 and 0.83 on the training and test sets, respectively. This 

means that there exists a high linear correlation between the protein bilinear indices and the 

structural classes of proteins. The parameter (GC
2
) was considered on the basis of two main 

factors: firstly the capacity of providing a more balanced assessment of the prediction than 

percentage measures and secondly the difficulty in generalizing the Matthews correlation 

coefficient to consider more than two classes (Baldi et al., 2000). 

Table 5 comes about here 

In order to assess the internal validity of the model, we performed bootstrapping cross-

validation on the training set. The basic requirement for this method is that the data must be 

representative of the population from which it is drawn (Eriksson et al., 2003; Tropsha et al., 

2003). During the application of this strategy, K groups of n elements are randomly selected 

from the original dataset. Some of these elements may be included more than once in the 

extracted sample, whereas others are never selected (Tropsha et al., 2003). Like other internal 

validation methods, high values for the average global accuracy is a proof of the robustness of 

the model (Tropsha et al., 2003). To apply the bootstrapping validation method the training set 
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was divided ten times in two subsets, one of them containing the 75% of the cases (about 112 

proteins) to fit the model and the other with the remaining 25% of the cases (about 37 proteins) 

for its validation. Random stratified sampling with replacement was employed as strategy for the 

selection of the validation samples, where the four classes of proteins represent the stratums. The 

amount of selected cases (proteins) in each stratum corresponds approximately to the proportion 

of that stratum (class) in the original dataset. In each one of the ten experiments of cross-

validation: the global accuracy, Wilk’s λ and Fisher ratio (F) were calculated; subsequently the 

average for each parameter was computed, (see Table 6 for details). The results attained in the 

bootstrapping cross-validation demonstrate the robustness and stability of the model in presence 

of perturbations in the data caused by the procedure. In addition, the fitting parameters: (λ, D2
, F) 

and the global accuracy on the training (QTotal
a
) and test (QTotal

b
) sets yield acceptable values 

from a statistical point of view. 

Table 6 comes about here 

 

4. CONCLUSIONS 

Novel 3D bio-macromolecular descriptors relevant to protein QSPR studies were 

proposed. We have demonstrated that the use of linear combinations of the novel 3D-protein 

bilinear indices is able not only to significantly discriminate among the four protein structural 

classes, but also permits the interpretation of the model obtained. The bootstrapping and the 

external validation tests established the robustness, stability and the high predictive power of the 

proposed LDA-model. Therefore, it may be suggested that the proposed MDs constitute a 

suitable tool to count on in protein research. 
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5. FUTURE OUTLOOKS 

 In forthcoming studies we will develop sequence-based (2D) protein descriptors, which 

could be used to build 2D-prediction methods for several protein attributes such as: protein 

structural classes (Chou, 2005), protein subcellular location (Chou and Shen, 2007), DNA 

binding proteins (Liu et al., 2014c; Liu et al., 2014d) and so on. Additionally, efforts will be 

made to provide web-servers for these new sequence-based predictors as is suggested in (Chou, 

2011) and followed through in a series of recent publications (Chen et al., 2013; Guo et al., 2014; 

Liu et al., 2014a; Liu et al., 2014d; Liu et al., 2014e). 
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ANNEXES 

 

(Tables and Figures to be inserted in the Main Text) 

 
Table 1. Amino acid side-chain labels. 

a
Molecular Mass (Mathews et al., 2000),

 b
Side-chain amino acid volume (Zamyatnin, 1972), 

c
Z-scale (Hellberg et 

al., 1987),
d
Atomic charge (Collantes and Dunn III, 1995), 

e
Side-chain isotropic surface area (Collantes and Dunn III, 

1995),
 f

Hoop-Woods hydropathy index (Hopp and Woods, 1981), 
g
Kyte-Doolittle hydropathy index (Kyte and 

Doolittle, 1982).  

Amino acid Code MMa MVb 
z-scalec 

ECId ISAe HWSf KDSg 
z1 z2 z3 

Alanine ALA A 89 88.6 0.01 -1.73 0.09 0.05 62.90 -0.5 1.8 

Arginine ARG R 174 173.4 2.88 2.52 -3.44 1.69 52.98 3.0 -4.5 

Asparagine ASN N 132 114.1 3.22 1.45 0.84 1.31 17.87 0.2 -3.5 

Aspartate ASP D 133 111.1 3.64 1.13 2.36 1.25 18.46 3.0 -3.5 

Cysteine CYS C 121 108.5 0.71 -0.97 4.13 0.15 78.51 -1.0 2.5 

Glutamate GLU E 146 143.8 3.08 0.39 -0.07 1.31 30.19 0.2 -3.5 

Glutamine GLN Q 147 138.4 2.18 0.53 -1.14 1.36 19.53 3.0 -3.5 

Glycine GLY G 75 60.1 2.23 -5.36 0.30 0.02 19.93 0.0 -0.4 

Histidine HIS H 155 153.2 2.41 1.74 1.11 0.56 87.38 -0.5 -3.2 

Isoleucine ILE I 131 166.7 -4.44 -1.68 -1.03 0.09 149.77 -1.8 4.5 

Leucine LEU L 131 166.7 -4.19 -1.03 -0.98 0.01 154.35 -1.8 3.8 

Lysine LYS K 146 168.6 2.84 1.41 -3.14 0.53 102.78 3.0 -3.9 

Methionine MET M 149 162.9 -2.49 -0.27 -0.41 0.34 132.22 -1.3 1.9 

Phenylalanine PHE F 165 189.9 -4.92 1.30 0.45 0.14 189.42 -2.5 2.8 

Proline PRO P 115 112.7 -1.22 0.88 2.23 0.16 122.35 0.0 -1.6 

Serine SER S 105 89.0 1.96 -1.63 0.57 0.56 19.75 0.3 -0.8 

Threonine THR T 119 116.1 0.92 -2.09 -1.40 0.65 59.44 -0.4 -0.7 

Tryptophan TRP W 204 227.8 -4.75 3.65 0.85 1.08 179.16 -3.4 -0.9 

Tyrosine TYR Y 181 193.6 -1.39 2.32 0.01 0.72 132.16 -2.3 -1.3 

Valine VAL V 117 140.0 -2.69 -2.53 -1.29 0.07 120.91 -1.5 4.2 
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Table 1. Amino acid side-chain labels (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
h
Isoelectric point (Hellberg et al., 1987);

 i,j,k
Relative frequencies with which an amino acid appear forming α-helices, 

β-sheets and reverse turns, respectively (Mathews et al., 2000);
 l,m

Geometric compatibility parameters (Sak et al., 

1999);
 n
Heat of formation (Sak et al., 1999).  

Amino acid Code PIEh PAHi PBSj PTTk L19l ξ
m EPSn 

Alanine ALA A 6.01 1.29 0.90 0.78 19.20 -77.85 -433.66 

Arginine ARG R 10.76 0.96 0.99 0.88 17.80 108.86 -403.21 

Asparagine ASN N 5.41 0.90 0.76 1.28 21.72 -55.42 -466.61 

Aspartate ASP D 2.77 1.04 0.72 1.41 17.14 47.89 -518.10 

Cysteine CYS C 5.07 1.11 0.74 0.80 18.83 160.13 -425.69 

Glutamate GLU E 3.22 1.44 0.75 1.00 18.55 134.68 -479.54 

Glutamine GLN Q 5.65 1.27 0.80 0.97 17.31 53.27 -531.69 

Glycine GLY G 5.97 0.56 0.92 1.64 19.48 -148.03 -420.86 

Histidine HIS H 7.59 1.22 1.08 0.69 13.97 -4.57 -378.92 

Isoleucine ILE I 6.02 0.97 1.45 0.51 20.76 -104.80 -449.27 

Leucine LEU L 5.98 1.30 1.02 0.59 17.65 -148.50 -448.27 

Lysine LYS K 9.74 1.23 0.77 0.96 17.05 47.61 -446.97 

Methionine MET M 5.74 1.47 0.97 0.39 17.88 46.37 -435.34 

Phenylalanine PHE F 5.48 1.07 1.32 0.58 16.81 47.67 -376.77 

Proline PRO P 6.48 0.52 0.64 1.91 18.55 169.73 -422.17 

Serine SER S 5.68 0.82 0.95 1.33 18.91 30.24 -479.75 

Threonine THR T 5.87 0.82 1.21 1.03 17.15 46.04 -483.37 

Tryptophan TRP W 5.89 0.99 1.14 0.75 20.94 178.69 -365.49 

Tyrosine TYR Y 5.66 0.72 1.25 1.05 16.86 49.11 -446.32 

Valine VAL V 5.97 0.91 1.49 0.45 17.88 -106.50 -434.30 
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Table 2. Amino acidic composition of the local fragments pre-defined in the 3D module of the 

TOMOCOMD-CAMPS software. 

  
Local-Fragment Amino acids  

RAP
a
 PRO, ILE, ALA, VAL, LEU, PHE, TRP, MET.  

R+
b
 LYS, HIS, ARG. 

R-
c
 ASP, GLU. 

RPU
d
 ASN, CYS, GLY, SER, THR, TYR, GLN. 

ARG
e
 PHE, TYR, TRP. 

ALG
f
 GLY, ALA, PRO, VAL, LEU, ILE, MET. 

UFG
g
 GLY, PRO. 

FAH
h
 ALA, CYS, LEU, MET, GLU, GLN, HIS, LYS. 

FBS
i
 VAL, ILE, PHE, TYR, TRP, THR. 

AFT
j
 GLY, SER, ASP, ASN, PRO. 

a
Apolar;

 b
Polar positively charged;

 c
Polar negatively charged;

 d
Polar 

uncharged;
 e

Aromatic;
 f

Aliphatic;
 g

Unfolding amino acids;
 h

Helix 

favoring amino acids;
 i

Beta-sheets favoring amino acids;
 j

Beta-turn 

favoring amino acids. 
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Table 3. LDA-model’s canonical discriminant functions at group centroids. 

 

  

Class CDF1 CDF2 CDF3 

All-α 3.94 -1.47 0.24 

All-β 0.25 2.28 0.04 

α/β -10.1 -1.0 -0.02 

α+β 3.9 -0.7 -0.3 
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Table 4. Standardized coefficients of the canonical discriminant functions 1 and 2. 
 

Variable 
Function  

1 2 

fghi
$,$ jj�k$l(mno, pno) -4.65 20.5 

fgqrsti7,$ jj�uvw(mno, pno) -0.45 0.4 

fghi
$,$ wOv�jj(mno, pno) 8.21 -34.3 

fghi
e,$ wOv�uxy(mno, pno) -5.13 20.7 

fghi
7,$ vzx�uvw(mno, pno) 1.04 -10.1 

fghi
$,$ uvw�wOv(mno, pno) -1.51 6.8 

fghi
7,$ uvw�wuz(mno, pno) -0.59 2.1 

fghi
e,$ uxy�u{z(mno, pno) 4.14 -28.5 

fghi
7,$ u{z�j|(mno, pno) -3.89 24.1 

fghi
e,e u{z�uxy(mno, pno) 0.67 7.3 

fghi
7,e u}}�j|(mno, pno) 0.80 -7.2 
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Table 5. Statistical parameters for the LDA-model. 
Set Global accuracy Q(%) Sensitivity Specificity 

Training 92.6 

Class Class 
All-α 86.8 All-α 86.8 

All-β 97.9 All-β 100.0 

α/β 100.0 α/β 100.0 

α+β 85.3 α+β 82.9 

Test 92.7 

Class  Class  

All-α 85.7 All-α 85.7 

All-β 100.0 All-β 100.0 

α/β 100.0 α/β 100.0 

α+β 83.3 α+β 83.3 
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Table 6. Statistical parameters for the bootstrapping cross-validation of the LDA-model.    
Group  QTotal

a λ D
2

12 D
2

13 D
2

14
 

D
2

23 D
2

24 D
2

34 F QTotal
b
 

1.  92.24 0.007 25.29 226.80 1.04 154.02 20.78 233.32 39.56 90.91 

2.  90.40 0.009 25.90 186.24 0.77 111.11 22.08 186.70 38.56 91.67 

3.  90.74 0.01 27.63 170.07 0.75 95.14 23.65 169.21 31.04 92.68 

4.  93.10 0.007 26.73 202.30 0.92 137.77 21.29 205.05 38.73 90.91 

5.  93.86 0.01 25.65 191.66 0.78 116.07 21.27 191.76 34.16 91.43 

6.  93.75 0.007 29.27 202.31 1.20 129.80 22.94 200.89 37.91 89.19 

7.  93.64 0.009 27.49 214.02 0.65 128.75 23.17 212.85 34.58 92.31 

8.  91.38 0.01 26.51 183.70 1.06 112.16 20.21 182.25 34.51 90.91 

9.  92.24 0.009 28.33 220.64 0.74 134.93 24.03 220.67 38.00 93.40 

10.  88.79 0.009 27.59 233.83 0.81 187.94 23.34 234.35 36.56 90.91 

Av 92.01 0.01 27.04 203.16 0.87 130.77 22.28 203.71 36.36 91.43 

Std 1.68 0.001 1.25 20.59 0.18 26.03 1.33 21.81 2.70 1.17 

LL 86.99 0.004 23.70 140.51 0.37 77.25 18.24 141.84 28.69 89.05 

UL 97.41 0.01 29.97 266.07 1.39 172.94 26.33 264.84 44.26 94.01 
a,b

Global accuracy of the LDA-model on the training (75% of the proteins) and test (25% of the proteins) sets,  

respectively, Av: Arithmetic mean, Std: Standard deviation, LL and UL: are calculated by mean of subtract 1.5 

times the difference between first and third quartiles to the first and third quartiles, respectively. 
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Figure 1. Major steps in the computation of the non-stochastic, simple-stochastic and double-

stochastic coulombic matrices. 
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Figure 2. Workflow followed in the calculation of the 3D-protein bilinear MDs.  
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Figure 3A). Application of the geometric lag l, cut-off interval lag l [6; 8], in the calculation of 

entries g~�ti
�,$

 of the non-stochastic coulombic matrix of order 1, �ti $
�
. 
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Figure 3B). Application of the topological lag p, cut-off interval lag p [2; 6], in the calculation of 

entries g~�ti
�,$

 of the non-stochastic coulombic matrix of order 1, �ti $
�
. 
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Figure 3C). Application of the geometric lag l and topological lag p, cut-off intervals (lag l [6; 

8]), lag p [2; 6]) in the calculation of entries g~�ti
�,$

 of the non-stochastic coulombic matrix of 

order 1, �ti $
�
. 
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Figure 4. Selection of the training and test sets, for the calibration and external validation of the 

LDA-model. 
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• New 3D protein descriptors based on the bilinear algebraic form are proposed. 

• We define the coulombic matrix to codify the 3D structure of proteins. 

• Normalization approaches for the coulombic matrix are employed. 

• Local-fragment indices and constrains approach are defined. 

• We built a model that showed high accuracy predicting protein structural classes. 




